Communication between receptor tyrosine kinase and G protein-coupled receptor (GPCR)-mediated signaling is recognized as a common integrator linking diverse aspects of intracellular signaling systems. Here, we report that G protein-coupled beta-adrenergic receptor activation leading to stimulation of salivary phospholipid release occurs with the involvement of epidermal growth factor receptor (EGFR). Using sublingual gland acinar cells, we show that prosecretory effect of isoproterenol on phospholipid release was subjected to suppression by EGFR kinase inhibitor, PD153035, and wortmannin, an inhibitor of PI3K, but not by PD98059, an inhibitor of extracellular signal regulated kinase (ERK). Furthermore, wortmannin, but not the ERK inhibitor, caused the reduction in the acinar cell secretory responses to beta-adrenergic agonist-generated cAMP as well as adenyl cyclase activator, forskolin. The acinar cell phospholipid secretory responses to isoproterenol, moreover, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR phosphorylation. Taken together, our data are the first to demonstrate the requirement for Src kinase-dependent EGFR transactivation in regulation of salivary phospholipid secretion in response to beta-adrenergic GPCR activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.04.016DOI Listing

Publication Analysis

Top Keywords

salivary phospholipid
12
phospholipid secretion
8
secretion response
8
response beta-adrenergic
8
src kinase-dependent
8
epidermal growth
8
growth factor
8
factor receptor
8
tyrosine kinase
8
phospholipid release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!