In trypanosomes, the parasite-specific thiol trypanothione [T(SH)2] fulfills various functions, the best established being detoxification of H2O2 and organic hydroperoxides and ribonucleotide reduction. Recently, a trypanothione synthetase (Tb-TryS) gene from Trypanosoma brucei was isolated and the heterologously expressed Tb-TryS catalyzed the entire synthesis of T(SH)2 from glutathione (GSH) and spermidine in vitro. To confirm the in situ function of the complex Tb-TryS activities and to evaluate the importance of T(SH)2 metabolism in T. brucei, TryS suppression by double-stranded RNA interference was performed. Knockdown of TryS led to depletion of both T(SH)2 and glutathionylspermidine (Gsp) and accumulation of GSH, while concomitantly impairment of viability and arrest of proliferation were observed. TryS-downregulated cells displayed a significantly increased sensitivity to H2O2 and tert.-butyl hydroperoxide. These data verify the hypothesis that in T. brucei, a single enzyme synthesizes the spermidine-conjugated thiols (Gsp and T(SH)2) and further confirms the significance of trypanothione in the defense against oxidative stress and the maintenance of viability and proliferation in unstressed parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.008DOI Listing

Publication Analysis

Top Keywords

trypanosoma brucei
8
trypanothione synthetase
8
validation trypanosoma
4
brucei
4
trypanothione
4
brucei trypanothione
4
synthetase drug
4
drug target
4
target trypanosomes
4
trypanosomes parasite-specific
4

Similar Publications

AUK3 is required for faithful nuclear segregation in the bloodstream form of Trypanosoma brucei.

Mol Biochem Parasitol

December 2024

University of Glasgow Centre for Parasitology, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom. Electronic address:

Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood.

View Article and Find Full Text PDF

Background: Rapid diagnostic tests for the serological detection of gambiense human African trypanosomiasis (gHAT) have been developed to overcome the limitations of the traditional screening method, CATT/T. b. gambiense.

View Article and Find Full Text PDF

Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes.

Nat Commun

December 2024

Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.

The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing.

View Article and Find Full Text PDF

Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans.

View Article and Find Full Text PDF

Initiation of protein translation is one of the key steps in protein synthesis carried out by translation initiation factors in conjunction with ribosomes. The roles and mechanisms of these initiation factors in prokaryotic and eukaryotic protein synthesis are well understood. However, they are only beginning to be understood in trypanosomatids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!