Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Minocycline, a semi-synthetic tetracycline antibiotic is reported to be neuroprotective in degenerative and ischaemic models of central nervous system disease, via mechanisms involving suppression of both cytotoxic microglial activity and caspase-dependent apoptosis. We have investigated the effect of minocycline treatment on a mouse model of retinitis pigmentosa, an inherited photoreceptor neurodegenerative disorder, and contrasted this with the effect of depleting retinal microglia using liposomal clodronate.
Methods: rds mice were treated intraperitoneally from the second postnatal day (P2) with either daily minocycline until P16, P18, P21, P24 and P27 or alternative day clodronate liposomes until P16. Immunohistochemical and immunofluorescent methods were applied for the detection of microglia (F4/80) and apoptosis (TUNEL and caspase 3 activation).
Results: Photoreceptor apoptosis was delayed by minocycline treatment but not, ultimately, prevented. Markedly reduced expression of activated caspase 3 was observed in photoreceptors at the early time point, corresponding with the reduced level of apoptosis. Delayed photoreceptor apoptosis due to minocycline treatment was associated with a 50% reduction in the numbers of microglia at early timepoints. Liposomal clodronate treatment also resulted in a marked reduction in the number of microglia (63% reduction in microglia), but in contrast to minocycline treatment, this had no effect on photoreceptor apoptosis.
Conclusions: Minocycline appears to delay photoreceptor apoptosis through a microglia-independent action. Although microglial cytotoxicity has been implicated during other models of neurodegeneration, microglia are unlikely to play such a role in this model of photoreceptor dystrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2004.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!