Mechanics and control of the flat versus normal foot during the stance phase of walking.

Clin Biomech (Bristol)

Faculty of Health Sciences, School of Physiotherapy, The University of Sydney, P.O. Box 170, Lidcombe, NSW 1825, Australia.

Published: May 2004

Objective: To compare walking stance phase rearfoot and forefoot motion, ankle joint moments and extrinsic foot muscle EMG profiles between normal and pes planus feet.

Design: A cross-sectional comparative study.

Background: Musculoskeletal conditions are often attributed to pes planus, in which motion is assumed to be excessive and the muscle control inadequate. However, many of the speculated differences in mechanics and control between the normal and the pes planus foot have not been quantified.

Methods: Kinematic and kinetic data were obtained from video recordings of skin surface markers and a force plate, and EMG was recorded with surface electrodes. Analysis of variance was carried out to compare the group profiles.

Results: In the pes planus group: the forefoot was less adducted (P < .05) at toe-off, and total transverse plane range of motion, at 8 degrees versus 10 degrees, was less (P < .01); the peak plantarflexor ankle moment at push-off was greater (P < .05); the invertor moment was greater at foot flat (P < .05); for the EMG profiles, activity early in stance, relative to the mean stance phase activity was higher (P < .01) in tibialis anterior and lower (P < .05) in the peronei, soleus and medial and lateral gastrocnemius.

Conclusions: Despite reaching statistical significance, the group differences were small for the task of laboratory walking at a natural pace. The main implications of the differences were for restraint of motion. The expectations of excessive motion and muscle effort in the pes planus group were therefore not substantiated.

Relevance: Symptomatic pes planus subjects did not reveal the expected biomechanical differences from normal subjects. The underlying causes of symptoms were not identifiable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2003.12.010DOI Listing

Publication Analysis

Top Keywords

pes planus
24
stance phase
12
mechanics control
8
emg profiles
8
normal pes
8
planus group
8
pes
6
planus
6
motion
5
control flat
4

Similar Publications

Background: Scarf osteotomy is a well-established procedure for hallux valgus, yet recurrence rates range from 3.6% to 10%. Pes planus, which often coexisting with hallux valgus, is a risk factor for recurrence.

View Article and Find Full Text PDF

This contribution details a new high-fidelity finite element analysis (FEA) methodology for the investigation of the effect of the graft size on the pressure distribution developing at the calcaneocuboid joint after the Evans osteotomy procedure. The FEA model includes all 28 bones of the foot up to the distal end of fibula and tibia as well as soft tissues, tendons, and muscles. The developed FEA model was validated by comparing the in-vivo pressure distribution on the foot plantar with the in-silico results, resulting in a low deviation equal to 7.

View Article and Find Full Text PDF

The Effect of Flexible Flatfoot on the Running Function in School-Age Children.

J Orthop Res

January 2025

1-7 Gait and Motion Analysis Center, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Flexible flatfoot is common among school-age children and significantly affects walking efficiency, balance stability, and joint-movement coordination in children. The demands on the skeletal structure and muscle function are increased during running; however, the impact of a flexible flatfoot on children's running capabilities is unclear. In this study, we aimed to investigate the effects of flexible flatfoot on the running function of school-age children.

View Article and Find Full Text PDF

Background: To provide improved treatment for hallux valgus (HV), we sought to understand more about the pathophysiologic connection between flatfoot deformity and HV by comparing coronal plane alignment of the medial column of the foot for patients with isolated HV, isolated flatfoot, and combined HV-flatfoot vs controls.

Methods: This study retrospectively assessed a consecutive series of 33 patients with combined symptomatic and radiographic HV and flatfoot, 33 isolated symptomatic HV, 33 isolated symptomatic flatfoot, and 33 controls. The medial column alignment was assessed in the coronal plane using 3-dimensional weightbearing computed tomography (WBCT); rotation was measured for the navicular, medial cuneiform, and first metatarsal (M1).

View Article and Find Full Text PDF

Enhanced diagnosis of pes planus and pes cavus using deep learning-based segmentation of weight-bearing lateral foot radiographs: a comparative observer study.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Unlabelled: A weight-bearing lateral radiograph (WBLR) of the foot is a gold standard for diagnosing adult-acquired flatfoot deformity. However, it is difficult to measure the major axis of bones in WBLR without using auxiliary lines. Herein, we develop semantic segmentation with a deep learning model (DLm) on the WBLR of the foot for enhanced diagnosis of pes planus and pes cavus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!