Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic component into RNA transcripts.

Bioorg Med Chem Lett

Protein Synthesis Technology Team, Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.

Published: May 2004

Site-specific incorporation of a hydrophobic nucleotide analog into RNA, by T7 transcription mediated by unnatural base pairs, was developed. The nucleotide analog, 5-phenylethynyl-3-(beta-D-ribofuranosyl)pyridin-2-one 5-triphosphate (denoted by Ph-yTP), was chemically synthesized and then site-specifically incorporated by T7 RNA polymerase into RNA opposite the pairing partner, 2-amino-6-(2-thienyl)purine (denoted by s) in DNA templates. The introduction of Ph-y into a theophylline-binding RNA aptamer, in which a uridine in the internal loop was replaced by Ph-y, raised the thermal stability of the aptamer. Thus, this unnatural nucleotide analog would be useful for stabilizing RNA tertiary structures and complexes between RNA and other molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2004.02.072DOI Listing

Publication Analysis

Top Keywords

nucleotide analog
12
unnatural base
8
base pairs
8
site-specific incorporation
8
rna
7
unnatural
4
pairs mediate
4
mediate site-specific
4
incorporation unnatural
4
unnatural hydrophobic
4

Similar Publications

A probe-based capture enrichment method for detection of A-to-I editing in low abundance transcripts.

Methods Enzymol

January 2025

Department of Biology, Indiana University, Bloomington, Indiana, United States. Electronic address:

Exactly two decades ago, the ability to use high-throughput RNA sequencing technology to identify sites of editing by ADARs was employed for the first time. Since that time, RNA sequencing has become a standard tool for researchers studying RNA biology and led to the discovery of RNA editing sites present in a multitude of organisms, across tissue types, and in disease. However, transcriptome-wide sequencing is not without limitations.

View Article and Find Full Text PDF

Obstacles in quantifying A-to-I RNA editing by Sanger sequencing.

Methods Enzymol

January 2025

Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:

Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.

View Article and Find Full Text PDF

Nanopore sequencing to detect A-to-I editing sites.

Methods Enzymol

January 2025

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore. Electronic address:

Adenosine-to-inosine (A-to-I) RNA editing, mediated by the ADAR family of enzymes, is pervasive in metazoans and functions as an important mechanism to diversify the proteome and control gene expression. Over the years, there have been multiple efforts to comprehensively map the editing landscape in different organisms and in different disease states. As inosine (I) is recognized largely as guanosine (G) by cellular machineries including the reverse transcriptase, editing sites can be detected as A-to-G changes during sequencing of complementary DNA (cDNA).

View Article and Find Full Text PDF

A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20 and RR4-56, NNCM2, P31 and X9-2-2 were 98.9, 91.

View Article and Find Full Text PDF

Introduction: Locally advanced pancreatic cancer (LAPC) is a borderline unresectable malignancy that presents significant treatment challenges. The management of LAPC remains a complex issue, particularly in patients who are not eligible for surgical resection.

Case: Here, we report the case of a 60-year-old woman diagnosed with LAPC through pathological biopsy who subsequently underwent targeted immunotherapy following the failure of a gemcitabine, oxaliplatin, and S-1 (G&S) chemotherapy regimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!