AI Article Synopsis

Article Abstract

Guanosine-tetraphosphate (ppGpp) is a major regulator of stringent control, an adaptive response of bacteria to amino acid starvation. The 2.7 A resolution structure of the Thermus thermophilus RNA polymerase (RNAP) holoenzyme in complex with ppGpp reveals that ppGpp binds to the same site near the active center in both independent RNAP molecules in the crystal but in strikingly distinct orientations. Binding is symmetrical with respect to the two diphosphates of ppGpp and is relaxed with respect to the orientation of the nucleotide base. Different modes of ppGpp binding are coupled with asymmetry of the active site configurations. The results suggest that base pairing of ppGpp with cytosines in the nontemplate DNA strand might be an essential component of transcription control by ppGpp. We present experimental evidence highlighting the importance of base-specific contacts between ppGpp and specific cytosine residues during both transcription initiation and elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(04)00401-5DOI Listing

Publication Analysis

Top Keywords

ppgpp
9
structural basis
4
basis transcription
4
transcription regulation
4
regulation alarmone
4
alarmone ppgpp
4
ppgpp guanosine-tetraphosphate
4
guanosine-tetraphosphate ppgpp
4
ppgpp major
4
major regulator
4

Similar Publications

Persisters describe phenotypically switched cells refractory to antibiotic killing in a genetically susceptible population, while preserving the ability to resume growth when antibiotics are discontinued1,2. Since its proposal 70 years ago, great strides were made to build the framework regarding persistence, including defining triggered, spontaneous and antibiotic-induced persisters. However, challenges remain in characterizing the molecular determinants underlying the phenotypic switch into persistence3.

View Article and Find Full Text PDF

Unlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.

View Article and Find Full Text PDF

Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes.

View Article and Find Full Text PDF

Rapid changes in stress-related gene expression after short exposure of Arabidopsis leaves to cold plasma.

J Plant Physiol

November 2024

Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France. Electronic address:

Article Synopsis
  • - Cold Atmospheric Plasma (CAP) technology generates a mix of reactive species, UV radiation, and electromagnetic fields for biological applications, notably improving seed germination and plant growth, but the specific plant responses to CAP are still unclear.
  • - In a study, young Arabidopsis thaliana leaves exposed to short CAP treatments showed rapid, localized tissue damage while increasing hydrogen peroxide levels and upregulating stress-related genes, similar to a wound response.
  • - The research highlighted the activation of RSH genes, which are involved in stress regulation and photosynthesis, suggesting that CAP exposure triggers specific signaling pathways in plants, warranting further investigation into these metabolic responses.
View Article and Find Full Text PDF

Bacterial lifespan ranges from a few hours to geological timescales. The prolonged survival trait under extreme energy starvation is essential for the perpetuation of their existence. The theme for long-term survival [long-term stationary phase (LTSP)] in the non-growing state may be dependent on the diversity in the environmental niche and the lifestyle of the bacteria, exemplified by longevity studies, albeit few, with model organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!