Giardia lamblia is an early branching protist that possesses peripheral vacuoles (PVs) with characteristics of lysosome-like organelles, located underneath the plasma membrane. In more evolved cells, lysosomal protein trafficking is achieved by cargo recognition involving adaptor protein (AP) complexes that recognize specific amino acid sequences (tyrosine and/or dileucine motifs) within the cytoplasmic tail of membrane proteins. Previously, we reported that Giardia has a tyrosine-based sorting system, which mediates the targeting of a membrane-associated cysteine protease (encystation-specific cysteine protease, ESCP) to the PVs. Here, we show that Giardia AP1 mediates the transport of ESCP and the soluble acid phosphatase (AcPh) to the PVs. By using the yeast two-hybrid assay we found that the ESCP tyrosine-based motif interacts specifically with the medium subunit of AP1 (Gimicroa). Hemagglutinin-tagged Gimicroa colocalizes with ESCP and AcPh and coimmunoprecipitates with clathrin, suggesting that protein trafficking toward the PVs is clathrin-adaptin dependent. Targeted disruption of Gimicroa results in mislocalization of ESCP and AcPh but not of variant-specific surface proteins. Our results suggest that, unlike mammalian cells, only AP1 is involved in anterograde protein trafficking to the PVs in Giardia. Moreover, even though Giardia trophozoites lack a morphologically discernible Golgi apparatus, the presence of a clathrin-adaptor system suggests that this parasite possess a primitive secretory organelle capable of sorting proteins similar to that of more evolved cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452563 | PMC |
http://dx.doi.org/10.1091/mbc.e03-10-0744 | DOI Listing |
Plant Physiol
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFJ Neurochem
January 2025
Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK.
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Pediatrics, Erciyes University, Faculty of Medicine, Kayseri, Turkey.
The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
January 2025
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
Vesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
Unlabelled: Gram-negative bacteria play a pivotal role in the bioremediation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Because the outer membrane (OM) of these bacteria hinders the direct permeation of hydrophobic substances into the cells, trans-OM proteins are required for the uptake of PAHs. However, neither the characteristics of PAH transporters nor the specific transport mechanism has been well interpreted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!