Through pattern matching of the cytochrome c heme-binding site (CXXCH) against the genome sequence of Shewanella oneidensis MR-1, we identified 42 possible cytochrome c genes (27 of which should be soluble) out of a total of 4758. However, we found only six soluble cytochromes c in extracts of S. oneidensis grown under several different conditions: (1) a small tetraheme cytochrome c, (2) a tetraheme flavocytochrome c-fumarate reductase, (3) a diheme cytochrome c4, (4) a monoheme cytochrome c5, (5) a monoheme cytochrome c', and (6) a diheme bacterial cytochrome c peroxidase. These cytochromes were identified either through N-terminal or complete amino acid sequence determination combined with mass spectroscopy. All six cytochromes were about 10-fold more abundant when cells were grown at low than at high aeration, whereas the flavocytochrome c-fumarate reductase was specifically induced by anaerobic growth on fumarate. When adjusted for the different heme content, the monoheme cytochrome c5 is as abundant as are the small tetraheme cytochrome and the tetraheme fumarate reductase. Published results on regulation of cytochromes from DNA microarrays and 2D-PAGE differ somewhat from our results, emphasizing the importance of multifaceted analyses in proteomics.

Download full-text PDF

Source
http://dx.doi.org/10.1089/153623104773547499DOI Listing

Publication Analysis

Top Keywords

monoheme cytochrome
12
cytochrome
9
cytochrome genes
8
shewanella oneidensis
8
soluble cytochromes
8
small tetraheme
8
tetraheme cytochrome
8
cytochrome tetraheme
8
flavocytochrome c-fumarate
8
c-fumarate reductase
8

Similar Publications

Geometric isomerization of dietary monounsaturated fatty acids by a cis/trans fatty acid isomerase from Pseudomonas putida KT2440.

Int J Biol Macromol

November 2024

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Pseudomonas putida KT2440 encodes a defense system that rigidifies membranes by a cytochrome c-type cis/trans fatty acid isomerase (CTI). Despite its potential as an industrial biocatalyst for directly regulating the geometric isomerism of monounsaturated fatty acids, its original catalytic and structural properties have remained elusive. In this study, the catalytic nature of wild-type CTI purified P.

View Article and Find Full Text PDF

Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry.

View Article and Find Full Text PDF

Resonance assignments of cytochrome MtoD from the extracellular electron uptake pathway of sideroxydans lithotrophicus ES-1.

Biomol NMR Assign

December 2024

Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, 2780-157, Portugal.

The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway.

View Article and Find Full Text PDF

A cytochrome c mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii.

Plant Commun

February 2024

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:

Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc/bf complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc/bf complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc.

View Article and Find Full Text PDF

Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens.

J Biol Chem

October 2023

Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal. Electronic address:

Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!