Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several observations indicate that the cloud deck of the venusian atmosphere may provide a plausible refuge for microbial life. Having originated in a hot proto-ocean or been brought in by meteorites from Earth (or Mars), early life on Venus could have adapted to a dry, acidic atmospheric niche as the warming planet lost its oceans. The greatest obstacle for the survival of any organism in this niche may be high doses of ultraviolet (UV) radiation. Here we make the argument that such an organism may utilize sulfur allotropes present in the venusian atmosphere, particularly S(8), as a UV sunscreen, as an energy-converting pigment, or as a means for converting UV light to lower frequencies that can be used for photosynthesis. Thus, life could exist today in the clouds of Venus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/153110704773600203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!