For static beam conformal intracranial radiosurgery, geometry of the beam arrangement dominates overall dose distribution. Maximizing beam separation in three dimensions decreases beam overlap, thus maximizing dose conformality and gradient outside of the target volume. Webb proposed arrangements of isotropically convergent beams that could be used as the starting point for a radiotherapy optimization process. We have developed an extracranial radiosurgery optimization method by extending Webb's isotropic beam arrangements to deliverable beam arrangements. This method uses an arrangement of N maximally separated converging vectors within the space available for beam delivery. Each bouquet of isotropic beam vectors is generated by a random sampling process that iteratively maximizes beam separation. Next, beam arrangement is optimized for critical structure avoidance while maintaining minimal overlap between beam entrance and exit pathways. This geometrically optimized beam set can then be used as a template for either conformal beam or intensity modulated extracranial radiosurgery. Preliminary results suggest that using this technique with conformal beam planning provides high plan conformality, a steep dose gradient outside of the tumour volume and acceptable critical structure avoidance in the majority of clinical cases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/49/6/009 | DOI Listing |
Phys Rev Lett
December 2024
Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.
Linear colliders rely on high-quality flat beams to achieve the desired event rate while avoiding potentially deleterious beamstrahlung effects. Here, we show that flat beams in plasma accelerators can be subject to quality degradation due to emittance mixing. This effect occurs when the beam particles' betatron oscillations in a nonlinearly coupled wakefield become resonant in the horizontal and vertical planes.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.
Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.
Clin Oral Investig
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.
Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.
Rev Sci Instrum
January 2025
Bennu Climate, Inc. and Symbolic Systems Program, Stanford University, Stanford, California 94305, USA.
The Linac Coherent Light Source (LCLS) is the world's first x-ray free electron laser. It is a scientific user facility operated by the SLAC National Accelerator Laboratory, at Stanford, for the U.S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!