Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture.

Anat Rec A Discov Mol Cell Evol Biol

Research Service and Geriatrics Research, Education, and Clinical Center, Miami Veterans Affairs Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA.

Published: May 2004

Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) can differentiate into chondrogenic cells for the potential treatment of injured articular cartilage. To evaluate agarose gels as a supportive material for chondrogenesis of hBM-MSCs, this study examined chondrogenesis of hBM-MSCs in the agarose cultures. Pellet cultures were employed to confirm the chondrogenic potential of the hBM-MSCs that were used in agarose cultures. The hBM-MSCs were seeded in 2% agarose constructs at the initial cell-seeding densities of 3, 6, and 9 x 10(6) cells/ml while each of pellets was formed using 2.5 x 10(5) cells. Chondrogenesis of hBM-MSCs was induced by culturing cell-agarose constructs and pellets for 21 days in the presence of a defined medium containing transforming growth factor beta3 (TGF-beta3). The analysis of reverse transcription-polymerase chain reaction showed that hBM-MSCs of agarose and pellet cultures expressed the chondrogenic markers of collagen type II and aggrecan in the presence of TGF-beta3. The deposition of cartilage-specific macromolecules was detected in both agarose and pellet cultures by histological and immunohistochemical assessments. Chondrogenesis of hBM-MSCs in agarose gels directly correlated with the initial cell-seeding density, with the cell-agarose constructs of higher initial cell-seeding density exhibiting more cartilage-specific gene expressions. This study establishes a basic model for future studies on chondrogenesis of hBM-MSCs using the agarose cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.a.20010DOI Listing

Publication Analysis

Top Keywords

chondrogenesis hbm-mscs
20
hbm-mscs agarose
20
agarose cultures
12
pellet cultures
12
initial cell-seeding
12
agarose
9
hbm-mscs
9
human bone
8
mesenchymal stem
8
stem cells
8

Similar Publications

An enzymatically crosslinked collagen type II/hyaluronic acid hybrid hydrogel: A biomimetic cell delivery system for cartilage tissue engineering.

Int J Biol Macromol

November 2024

Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Inselspital, Bern University Hospital, Department of Orthopedic Surgery & Traumatology, Bern, Switzerland.

This study presents new injectable hydrogels based on hyaluronic acid and collagen type II that mimic the polysaccharide-protein structure of natural cartilage. After collagen isolation from chicken sternal cartilage, tyramine-grafted hyaluronic acid and collagen type II (HA-Tyr and COL-II-Tyr) were synthesized. Hybrid hydrogels were prepared with different ratios of HA-Tyr/COL-II-Tyr using horseradish peroxidase and noncytotoxic concentrations of hydrogen peroxide to encapsulate human bone marrow-derived mesenchymal stromal cells (hBM-MSCs).

View Article and Find Full Text PDF
Article Synopsis
  • This study explored the use of chitosan/alginate nanoparticles with recombinant human bone morphogenetic-2 (rhBMP-2) and a plasmid for enhancing cartilage formation from human bone marrow stem cells.
  • The stem cells were treated with various combinations of biological agents, and the effectiveness was measured using gene expression analysis and staining techniques.
  • Results showed the biological cocktail (BC) significantly boosted cartilage-related gene expression compared to other treatments, indicating its potential for improving cartilage regeneration.
View Article and Find Full Text PDF

Background: Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro.

View Article and Find Full Text PDF

Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials.

View Article and Find Full Text PDF

Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!