The purpose of this study was to investigate the modified three-point Dixon technique as a method for obtaining fat-saturated T1-weighted sequences before and after intravenous gadolinium administration using an open MR imaging scanner. A preliminary experiment using an oil/gadolinium phantom was performed on a 0.35-T open magnet and an advanced 1.5-T unit. Fat saturation was achieved at 1.5 T using a frequency selective presaturation technique and a modified three-point Dixon technique on the low-field scanner. The modified three-point Dixon sequence was then evaluated in ten patients undergoing MRI examinations of the spine with gadolinium enhancement to determine image characteristics and diagnostic potential. The phantom study demonstrated a homogenous suppression of signal from oil and a good distinction between fat and a gadolinium chelate on the 0.35-T unit comparable to that on the 1.5-T scanner. By applying the modified three-point Dixon technique on the open-magnet, the distinction between fat and gadolinium dimeglumine was rated as very good in 139 and good in 17 axial slices in a total of 156 images. No image was rated as difficult or not possible. Motion artifacts that hampered the reading were detected in the lower cervical spine due to respiratory movement in four (3% of all) images. The modified three-point Dixon technique provides the combination of gadolinium enhancement with fat saturation on an open magnet. Early clinical applications appear promising.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-004-2331-3 | DOI Listing |
ScientificWorldJournal
January 2025
Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
While polyethylene terephthalate glycol (PETG) is widely used in orthodontic appliances such as clear aligners and retainers, there is limited experimental data assessing its performance under functional stresses, such as those encountered during dental movements and palatal expansion. This study aims to evaluate the ability of PETG thermoplastic material to withstand deformation under functional and expansion forces, specifically within the context of orthodontic applications. To estimate the firmness of the screw within the appliance, a universal Instron testing machine was used to record the forces released by each activation of the expander within the upper part of 10 clear modified twin blocks (MTBs) made from PETG and compare it with that released by 10 conventional twin blocks (CTBs).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic.
The popularity of 3D printing technology is rapidly increasing worldwide. It can be applied to metals, ceramics, composites, hybrids, and polymers. Three-dimensional printing has the potential to replace conventional manufacturing technologies because it is cost effective and environmentally friendly.
View Article and Find Full Text PDFJ Exp Orthop
January 2025
Department of Orthopaedic Surgery Hannover Medical School, Laboratory for Biomechanics and Biomaterials Hannover Germany.
Purpose: Effective rehabilitation after orthopaedic surgery is critical. The early post-operative phase is increasingly managed in outpatient settings, necessitating objective measures such as step counts to monitor rehabilitation progress. However, it remains unclear if commercially available wearables or accelerometers using simple algorithms can accurately count steps in early post-operative conditions.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Łódź, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!