Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes.

EMBO J

Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland.

Published: May 2004

The Apaf-1 apoptosome is a multi-subunit caspase-activating scaffold that is assembled in response to diverse forms of cellular stress that culminate in apoptosis. To date, most studies on apoptosome composition and function have used apoptosomes reassembled from recombinant or purified proteins. Thus, the precise composition of native apoptosomes remains unresolved. Here, we have used a one-step immunopurification approach to isolate catalytically active Apaf-1/caspase-9 apoptosomes, and have identified the major constituents of these complexes using mass spectrometry methods. Using this approach, we have also assessed the ability of putative apoptosome regulatory proteins, such as Smac/DIABLO and PHAPI, to regulate the activity of native apoptosomes. We show that Apaf-1, caspase-9, caspase-3 and XIAP are the major constituents of native apoptosomes and that cytochrome c is not stably associated with the active complex. We also demonstrate that the IAP-neutralizing protein Smac/DIABLO and the tumor-suppressor protein PHAPI can enhance the catalytic activity of apoptosome complexes in distinct ways. Surprisingly, PHAPI also enhanced the activity of purified caspase-3, suggesting that it may act as a co-factor for this protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC424369PMC
http://dx.doi.org/10.1038/sj.emboj.7600210DOI Listing

Publication Analysis

Top Keywords

native apoptosomes
12
activity native
8
apoptosomes apaf-1
8
major constituents
8
apoptosomes
6
analysis composition
4
composition assembly
4
assembly kinetics
4
activity
4
kinetics activity
4

Similar Publications

Article Synopsis
  • The apoptosome plays a crucial role in regulating apoptosis through specific interactions between proteins with Caspase Activation and Recruitment Domain (CARD).
  • This study conducted a detailed computational analysis to identify key residues involved in the interaction between the CARD domains of Apaf-1 and Caspase-9, highlighting their importance for apoptosome function.
  • The findings also revealed that native interactions are more stable than those predicted between different complexes, emphasizing the specificity needed for effective protein interactions in apoptosis regulation.
View Article and Find Full Text PDF

Variants in the gene encoding human cytochrome c (CYCS) cause mild autosomal dominant thrombocytopenia. Despite high sequence conservation between mouse and human cytochrome c, this phenotype is not recapitulated in mice for the sole mutant (G41S) that has been investigated. The effect of the G41S mutation on the in vitro activities of cytochrome c is also not conserved between human and mouse.

View Article and Find Full Text PDF

Mitochondrial apoptotic signaling cascades lead to the formation of the apoptosome, a 1.1-MDa heptameric protein scaffold that recruits and activates the caspase-9 protease. Once activated, caspase-9 cleaves and activates downstream effector caspases, triggering the onset of cell death through caspase-mediated proteolysis of cellular proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in cytochrome c are linked to a mild form of thrombocytopenia, likely due to a gain-of-function effect, but the exact mechanisms are still unclear.
  • Three specific mutations (G41S, Y48H, A51V) lead to increased activation of the apoptosome and higher peroxidase activity, indicating structural changes in cytochrome c.
  • Molecular dynamics simulations show that these mutations enhance the flexibility of cytochrome c, particularly in specific regions, but not all activities of cytochrome c are influenced by its conformational dynamics.
View Article and Find Full Text PDF

Apaf-1 is a cytosolic multi-domain protein in the apoptosis regulatory network. When cytochrome c releases from mitochondria; it binds to WD-40 repeats of Apaf-1 molecule and induces oligomerization of Apaf-1. Here in, a split luciferase assay was used to compare apoptosome formation in cell-free and cell-based systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!