Intracellular domains of a rat brain GABA transporter that govern transport.

J Neurosci

Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA.

Published: April 2004

Plasma membrane neurotransmitter transporters determine in part the concentration, time course, and diffusion of extracellular transmitter. Much has been learned about how substrate translocation through the transporter occurs; however, the precise way in which transporter structure maps onto transporter function has not yet been fully elucidated. Here, biochemical and electrophysiological approaches were used to test the hypothesis that intracellular domains of the rat brain GABA transporter (GAT1) contribute to the transport process. Injection of a peptide corresponding to the presumed fourth intracellular loop of the transporter (IL4) into oocytes expressing GAT1 greatly reduced both forward and reverse transport and reduced the transport rate in a dose-dependent manner. Coinjection of the IL4 peptide with a peptide corresponding to the N-terminal cytoplasmic tail of GAT1 reversed the IL4-mediated inhibition; this reversal, and direct binding between these two domains, was prevented by mutagenesis of charged residues in either the IL4 or N-terminal domains. Furthermore, syntaxin 1A, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein that inhibits GAT1 transport rates via interactions with the N-terminal tail of GAT1 was unable to regulate the GAT1 IL4 mutant. Together, these data suggest a model in which the GAT1 IL4 domain serves as a barrier for transport, and this barrier can be regulated through intra-molecular and inter-molecular interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729413PMC
http://dx.doi.org/10.1523/JNEUROSCI.0664-04.2004DOI Listing

Publication Analysis

Top Keywords

intracellular domains
8
domains rat
8
rat brain
8
brain gaba
8
gaba transporter
8
peptide corresponding
8
tail gat1
8
gat1 il4
8
gat1
7
transporter
6

Similar Publications

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Coronaviruses are characterized by their progeny assembly and budding in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Our previous studies demonstrated that truncation of 9 amino acids in the cytoplasmic tail (CT) of the infectious bronchitis virus (IBV) spike (S) protein impairs its localization to the ERGIC, resulting in increased expression at the plasma membrane. However, the precise mechanism underlying this phenomenon remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!