Beta-amyloid peptides that are cleaved from the amyloid precursor protein (APP) play a critical role in Alzheimer's disease (AD) pathophysiology. Here, we show that in Drosophila, the targeted expression of the key genes of AD, APP, the beta-site APP-cleaving enzyme BACE, and the presenilins led to the generation of beta-amyloid plaques and age-dependent neurodegeneration as well as to semilethality, a shortened life span, and defects in wing vein development. Genetic manipulations or pharmacological treatments with secretase inhibitors influenced the activity of the APP-processing proteases and modulated the severity of the phenotypes. This invertebrate model of amyloid plaque pathology demonstrates Abeta-induced neurodegeneration as a basic biological principle and may allow additional genetic analyses of the underlying molecular pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729409PMC
http://dx.doi.org/10.1523/JNEUROSCI.0283-04.2004DOI Listing

Publication Analysis

Top Keywords

age-dependent neurodegeneration
8
neurodegeneration alzheimer-amyloid
4
alzheimer-amyloid plaque
4
plaque formation
4
formation transgenic
4
transgenic drosophila
4
drosophila beta-amyloid
4
beta-amyloid peptides
4
peptides cleaved
4
cleaved amyloid
4

Similar Publications

Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Cell Biology and Pathology, New York, NY, USA.

Background: Possession of the APOE4 allele is the strongest genetic risk factor for developing the sporadic form of Alzheimer's disease (AD). Studies investigating APOE4's associated AD risk have largely centered on APOE4's propensity to regulate the deposition of extracellular amyloid beta plaques. More recent attempts to characterize APOE4's role in AD have brought into question the role APOE4 may possess in modulating the pathogenesis of intracellular tau tangles.

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) incidence is almost double in female than male, suggesting sex-specific AD risk genes remain unknown.

Method: We designed a statistical physics approach that exploits freely available but massive evolutionary and phylogenetic coupling data on sequence variation and speciation. These couplings lead to quantifiable values for the selection pressure exerted on the genes within a population.

View Article and Find Full Text PDF

Background: Alzheimer's disease is a progressive form of dementia where cognitive capacities deteriorate due to neurodegeneration. Interestingly, Alzheimer's patients exhibit cognitive fluctuations during all stages of the disease. Though it is thought that contextual factors are critical for unlocking these hidden memories, understanding the neural basis of cognitive fluctuations has been hampered due to the lack of behavioral approaches to dissociate memories from contextual-performance.

View Article and Find Full Text PDF

Age-related cognitive decline presents a healthcare challenge. While age-related mechanisms are mainly studied in humans, animal models provide key insights. Despite evidence of sex-specific differences in aging and cognition, the impact of age on female rodent behaviour is underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!