Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M402813200 | DOI Listing |
Immunol Rev
December 2024
Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
T-box transcription factor 21 (TBX21) plays a vital role in regulating immune responses, systemic diseases, and tumor progression. However, the role of TBX21 in colorectal cancer (CRC) metastasis remains unclear. In this study, we observed that TBX21 expression was marked decreased in CRC tissues compared to normal tissues and was negatively correlated with TNM stages.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Hematology, Nanjing Jiangning Hospital, Nanjing 211100, Jiangsu Province, China.
Objective: To determine the serum levels of mRNA and CCN1 in patients with acute leukemia (AL), and to analyze their relationship with the clinical efficacy and prognosis of the patients.
Methods: 103 AL patients admitted to our hospital from February 2015 to January 2019 were included as the study subjects. Additionally, 100 healthy subjects who underwent physical examinations during the same period were included as the control group.
Acta Biomater
December 2024
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, P. R. China. Electronic address:
Natural killer (NK) cell-based immunotherapy has emerged as a safe and effective therapeutic modality for cancer treatment. However, therapeutic benefits can be only seen in hematological tumors (e.g.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Lipid nanoparticles (LNPs) have emerged as pivotal vehicles for messenger RNA (mRNA) delivery to hepatocytes upon systemic administration and to antigen-presenting cells following intramuscular injection. However, achieving systemic mRNA delivery to non-hepatocytes remains challenging without the incorporation of targeting ligands such as antibodies, peptides, or small molecules. Inspired by comb-like polymeric architecture, here we utilized a multiarm-assisted design to construct a library of 270 dendron-like degradable ionizable lipids by altering the structures of amine heads and multiarmed tails for optimal mRNA delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!