Streptococcus pneumoniae causes several diseases, including otitis media, pneumonia, and meningitis. Although little is known about the regulation of or how individual pneumococcal factors contribute to these disease states, there is evidence suggesting that some factors are regulated by a cell-density-dependent mechanism (quorum sensing). Quorum sensing allows bacteria to couple transcription with changes in cell density; bacteria achieve this by sensing and responding to small diffusible signaling molecules. We investigated how the LuxS signaling system impacts the biology of S. pneumoniae. An analysis of the transcriptional profiles of a serotype 2 strain and an isogenic luxS deletion strain utilizing an S. pneumoniae-specific microarray indicated that LuxS regulates gene expression involved in discrete cellular processes, including pneumolysin expression. Contrary to the paradigm for quorum sensing, we observed pronounced effects on transcription in early log phase, where gene expression was repressed in the mutant. Assessing the mutant for its ability to infect and cause disease in animals revealed a profound defect in ability to persist in the nasopharyngeal tissues. Our analysis of an S. pneumoniae transcriptome revealed a function for LuxS in gene regulation that is not dependent upon high cell density and is likely involved in the maintenance of pneumococcal load in susceptible hosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC387900PMC
http://dx.doi.org/10.1128/IAI.72.5.2964-2975.2004DOI Listing

Publication Analysis

Top Keywords

quorum sensing
12
cell density
8
gene expression
8
luxs
5
luxs required
4
required persistent
4
persistent pneumococcal
4
pneumococcal carriage
4
expression
4
carriage expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!