Pharmacological analysis and molecular cloning of the canine equilibrative nucleoside transporter 1.

Eur J Pharmacol

Department of Physiology and Pharmacology, M216 Medical Sciences Building, University of Western Ontario, London, Ontario, Canada N6A 5C1.

Published: April 2004

We studied the binding of [3H]nitrobenzylthioinosine (NBMPR) and the uptake of [3H]formycin B by the es (equilibrative inhibitor-sensitive) nucleoside transporter of Madin Darby Canine Kidney (MDCK) cells. NBMPR inhibited [3H]formycin B uptake with a Ki of 2.7+/-0.6 nM, and [3H]NBMPR had a KD of 1.3+/-0.3 nM for binding to these cells; these values are significantly higher than those obtained in human and mouse cell models. In contrast, other recognized es inhibitors, such as dipyridamole, were significantly more effective as inhibitors of [3H]NBMPR binding and [3H]formycin B uptake by MDCK cells relative to that seen for human cells. We isolated a cDNA encoding the canine es nucleoside transporter (designated cENT1), and assessed its function by stable expression in nucleoside transport deficient PK15NTD cells. The PK15-cENT1 cells displayed inhibitor sensitivities that were comparable to those obtained for the endogenous es nucleoside transporter in MDCK cells. These data indicate that the dog es/ENT1 transporter has distinctive inhibitor binding characteristics, and that these characteristics are a function of the protein structure as opposed to the environment in which it is expressed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.03.026DOI Listing

Publication Analysis

Top Keywords

nucleoside transporter
16
mdck cells
12
[3h]formycin uptake
8
cells
7
nucleoside
5
transporter
5
pharmacological analysis
4
analysis molecular
4
molecular cloning
4
cloning canine
4

Similar Publications

Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.

Chin J Integr Med

January 2025

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.

Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.

Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).

View Article and Find Full Text PDF

Ticagrelor, a reversible platelet P2Y receptor antagonist, exerts various pleiotropic actions, some of which are at least partially mediated through adenosine. We studied the ticagrelor and adenosine effect on the angiogenic properties of progenitor CD34-derived endothelial colony-forming cells (ECFCs). Angiogenesis studies were performed in vitro using capillary-like tube formation and spheroid-based angiogenesis assays.

View Article and Find Full Text PDF

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia.

Bioorg Chem

January 2025

Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!