Endochondral ossification, the process by which most of the skeleton is formed, is a powerful system for studying various aspects of the biological response to degraded extracellular matrix (ECM). In addition, the dependence of endochondral ossification upon neovascularization and continuous ECM remodeling provides a good model for studying the role of the matrix metalloproteases (MMPs) not only as simple effectors of ECM degradation but also as regulators of active signal-inducers for the initiation of endochondral ossification. The daunting task of elucidating their specific role during endochondral ossification has been facilitated by the development of mice deficient for various members of this family. Here, we discuss the ECM and its remodeling as one level of molecular regulation for the process of endochondral ossification, with special attention to the MMPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779708 | PMC |
http://dx.doi.org/10.1016/j.tcb.2003.12.003 | DOI Listing |
BMC Nurs
January 2025
Department of Orthopedic, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
Objective: This study aims to analyze the medical-seeking behavior of Osteogenesis Imperfecta(OI) children in Southwest China, summarize and analyze the issues in their medical process, and propose corresponding improvement strategies.
Methods: A phenomenological study involving semi-structured interviews with 20 OI caregivers at a tertiary centre for children from March to August 2021 was analyzed thematically, following Anderson's model.
Results: We identified eight themes in the data: 1)Regional disparities of OI management, 2)Big economic burden, 3)High-risk population, 4)Lack of health education, 5)Multiple treatments,6)Strict treatment indications,7)Disappointing therapeutic outcomes,8)Effective or ineffective treatment results.
Nat Commun
January 2025
Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, China.
Alcoholic osteonecrosis of the femoral head (AIONFH) is caused by long-term heavy drinking, which leads to abnormal alcohol and lipid metabolism, resulting in femoral head tissue damage, and then pathological necrosis of femoral head tissue. If not treated in time in clinical practice, it will seriously affect the quality of life of patients and even require hip replacement to treat alcoholic femoral head necrosis. This study will confirm whether M2 macrophage exosome (M2-Exo) miR-122 mediates alcohol-induced BMSCs osteogenic differentiation, ultimately leading to the inhibition of femoral head necrosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bone Joint, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256600, China.
This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!