Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tea is one of the most popular beverages, consumed by over two thirds of the world's population; but the aluminum accumulation property of tea plant is becoming the focus of many researches because of aluminum's known adverse effect on human health. Investigation of the interactions of catechins with Al(3+) showed that during the interaction of catechins with Al(3+), the UV-vis spectrum of catechins was changed. Absorption of EGCG at 274 nm decreased and increased at 322 nm; EC and C's at 278 nm changed little. The ratio of Al(3+) to EGCG was 1:1 in pH 5.0 buffer solution; in pH 6.2 buffer solution, the ratio in the Al-EGCG complex was 1:1. Interestingly, while the ratio reached to over 2, after the complex of Al-EGCG started polymerization, the ratio in the polymer was 2:1. In pH 6.2 buffer solution, the complex behavior of C with Al(3+) was the same as that of EGCG, with a little difference for EC. When the ratio of Al(3+) to EC was <1, the complex in ratio was 1:2, but, the complex polymerized when the ratio of Al(3+) to EC was >1. It was found that the ratio of Al(3+) to EC in the polymer was 1:1. Polymerization of Al-catechin complexes might reduce aluminum absorption in the intestine. Kow value was also employed to study the properties of aluminum species in tea infusion (at gastric and intestine pH condition) and the effect of catechins and tea polyphenols on Kow in buffer solution. Results showed that Kow value rose much higher at the intestine pH than at the gastric pH. Tea polyphenols and catechins could greatly reduce aluminum Kow value in acetic buffer, indicating that these compounds may reduce aluminum absorption during tea intake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02840978 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!