[Specific sampling of biological material in the diagnosis of nosocomial pneumonia].

Klin Mikrobiol Infekc Lek

Department of Pulmonology, University Hospital, 62500 Brno, Czech Republic.

Published: February 2004

Before deciding what biological material should be investigated to determine the aetiology of nosocomial pneumonia, we have to carefully examine the patient and study documentary material about earlier treatment, especially the duration of artificial ventilation. When exploring the aetiological agent of nosocomial pneumonia we should analyse the patient's sputum, hemoculture, pleural effusion, urine to detect antigens of Legionella pneumophila, indicate transparietal lung biopsy under CT control and in isolated cases also open lung biopsy. Of great value is the investigation of material obtained during bronchoscopy, especially an analysis of the bronchoalveolar fluid from bronchoalveolar lavage. The procedures to obtain such material should be carefully chosen. Results should be correctly interpreted following the assessment of all available information on the patient.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biological material
8
nosocomial pneumonia
8
lung biopsy
8
material
5
[specific sampling
4
sampling biological
4
material diagnosis
4
diagnosis nosocomial
4
nosocomial pneumonia]
4
pneumonia] deciding
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Organic Mixed Conductors for Neural Biomimicry and Biointerfacing.

Annu Rev Chem Biomol Eng

January 2025

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden; email:

Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications.

View Article and Find Full Text PDF

Anti-icing properties of polar bear fur.

Sci Adv

January 2025

Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway.

The polar bear () is the only Arctic land mammal that dives into water to hunt. Despite thermal insulation provided by blubber and fur layers and low Arctic temperatures, their fur is typically observed to be free of ice. This study investigates the anti-icing properties of polar bear fur.

View Article and Find Full Text PDF

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Article Synopsis
  • Parasitoid wasps, a highly diverse group of animals, use their venoms to manipulate the physiology of host larvae for their benefit.
  • Researchers discovered that a specific wasp can cause the death and dysfunction of its host's tissue precursors, a process called imaginal disc degradation (IDD).
  • The study identified two venom proteins crucial for IDD, showing how the wasp's venom strategically ensures the host grows but inhibits its transformation into adulthood.
View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!