We have used functional MRI to determine the effects of ketamine on brain systems activated in association with a working memory task. Healthy volunteers received intravenous infusions of placebo, ketamine at 50 ng/ml plasma concentration, and ketamine at 100 ng/ml. They were scanned while carrying out a verbal working memory task in which we varied the executive requirements (manipulation vs maintenance processes) and the mnemonic load (three vs five presented letters). We previously showed that ketamine produces a specific behavioral impairment in the manipulation task. In the current study, we modified tasks in order to match performance across drug and placebo conditions, and used an event-related fMRI design, allowing us to remove unsuccessful trials from the analysis. Our results suggest a task-specific effect of ketamine on working memory in a brain system comprising frontal cortex, parietal cortex, and putamen. When subjects are required to manipulate presented letters into alphabetical order, as opposed to maintaining them in the order in which they were presented, ketamine is associated with significantly greater activity in this system, even under these performance-matched conditions. No significant effect of ketamine was seen in association with increasing load. This suggests that our findings are not explicable in terms of a nonspecific effect of ketamine when task difficulty is increased. Rather, our findings provide evidence that the predominant effects of low, subdissociative doses of ketamine are upon the control processes engaged by the manipulation task. Furthermore, we have shown that ketamine's effects may be elucidated by fMRI even when overt behavioral measures show no evidence of impairment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838946PMC
http://dx.doi.org/10.1038/sj.npp.1300438DOI Listing

Publication Analysis

Top Keywords

working memory
16
memory task
12
ketamine
9
verbal working
8
presented letters
8
manipulation task
8
task
6
acute ketamine
4
ketamine administration
4
administration alters
4

Similar Publications

Tonal short-term memory has been positively associated with both incidentally acquired absolute pitch memory (e.g., for popular songs) and explicitly learned absolute pitch (AP) categories; however, the relationship between these constructs has not been directly tested within the same individuals.

View Article and Find Full Text PDF

Modelling of pollutants provides valuable insights into air quality dynamics, aiding exposure assessment where direct measurements are not viable. Machine learning (ML) models can be employed to explore such dynamics, including the prediction of air pollution concentrations, yet demanding extensive training data. To address this, techniques like transfer learning (TL) leverage knowledge from a model trained on a rich dataset to enhance one trained on a sparse dataset, provided there are similarities in data distribution.

View Article and Find Full Text PDF

The effect of occlusion on the visual working memory pointer-system.

Cortex

January 2025

The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

To access its online representations, visual working memory (VWM) relies on a pointer-system that creates correspondence between objects in the environment with their memory representations. This pointer-system allows VWM to modify its representations using a process called updating. When the pointer is invalidated, however, VWM triggers a process called resetting in which the no longer relevant representation and pointer are replaced.

View Article and Find Full Text PDF

The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!