Background: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular matrix protein proteins and that asthmatic ASM cells proliferate faster than cells from nonasthmatic patients.
Objective: In this study, we compared the profile of extracellular matrix proteins produced by nonasthmatic and asthmatic ASM cells. We also examined the influence of these extracellular matrix protein proteins and conditioned medium derived from nonasthmatic or asthmatic ASM cells on the proliferation of nonasthmatic and asthmatic ASM cells.
Methods: Extracellular matrix proteins were measured by ELISA; proliferation of ASM cells was measured by tritiated thymidine incorporation.
Results: Production of perlecan and collagen I by the cells from asthmatic patients were significantly increased. In contrast, laminin alpha1 and collagen IV were decreased. Chondroitin sulfate was detectable only in the cells from nonasthmatic patients. Compared with nonasthmatic extracellular matrix proteins, proteins from asthmatic cells enhanced ASM cell proliferation. Conditioned medium from asthmatic ASM cells did not induce greater proliferation compared with conditioned medium from nonasthmatic cells.
Conclusions: The data show that the profile of extracellular matrix protein components is altered in asthmatic cells and that this altered profile and not soluble mediators secreted from the ASM cells has the potential to influence the proliferation of these cells. These changes are likely to contribute to the airway wall remodeling that occurs in asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2003.12.312 | DOI Listing |
FASEB J
January 2025
Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
Tissue fibrosis is a progressive pathological process with excessive deposition of extracellular matrix proteins (ECM). Myofibroblasts, identified by alpha-smooth muscle actin (αSMA) expression, play an important role in tissue fibrosis by producing ECM. Here, we found that the Wnt antagonist Dickkopf1 (DKK1) induced gene expressions associated with inflammation and fibrosis in lung fibroblasts.
View Article and Find Full Text PDFNano Lett
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
Pancreatic ductal adenocarcinoma (PDAC) remains an aggressive malignancy. The occurrence of perineural invasion is associated with neuropathic pain and poor prognosis of PDAC, underscoring the active participation of nerves and their potential as therapeutic targets. Lidocaine is a local anesthetic with antitumor properties in some tumors in the clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!