Plant Biotechnology Can Enhance Food Security and Nutrition in the Developing World Part 1.

Nutr Today

Maureen Mackey, PhD, RD, is responsible for communicating with the nutritional and medical communities about crop biotechnology and its potential to improve food security and nutrition.; Jill Montgomery, MA, is the Regional Director of Government & Public Affairs for Monsanto Company in the Asia Pacific region. Before joining Monsanto in 1996, she worked for several years at the World Bank in Washington, DC.

Published: March 2004

The world’s demand for food production will increase markedly in the coming years. Meeting this demand will require that we employ all manner of approaches, including the use of biotechnology, to produce results that cannot be achieved using traditional methods. This 2-part article reviews ongoing experiences in developing countries where crop biotechnology is being used to enhance the availability and/or nutritional value of local crops. In part 1, the authors describe strategies that seek to enhance yields of staples and to improve the yields of indigenous nutritious foods. In Part 2 of this article, the authors describe strategies that seek to enhance the nutrient density of foods that can increase net income to resource-poor farmers in developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00017285-200403000-00003DOI Listing

Publication Analysis

Top Keywords

biotechnology enhance
8
developing countries
8
authors describe
8
describe strategies
8
strategies seek
8
seek enhance
8
plant biotechnology
4
enhance
4
enhance food
4
food security
4

Similar Publications

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy.

Vaccines (Basel)

November 2024

Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.

The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.

View Article and Find Full Text PDF

Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions.

Vaccines (Basel)

November 2024

Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies.

View Article and Find Full Text PDF

: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a highly pathogenic virus causing severe respiratory illness, with limited treatment options that are mostly supportive. The success of mRNA technology in COVID-19 vaccines has opened avenues for antibody development against MERS-CoV. mRNA-based antibodies, expressed in vivo, offer rapid adaptability to viral mutations while minimizing long-term side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!