Complete DiGeorge syndrome is a fatal congenital disorder characterized by athymia, hypoparathyroidism, and heart defects. Less than half of patients are 22q11 hemizygous. The goal of this study was to assess if immune suppression followed by postnatal thymus transplantation would lead to T-cell function in 6 infant patients who had host T cells at the time of transplantation. All infants had fewer than 50 recent thymic emigrants (CD3(+)CD45RA(+)CD62L(+)) per cubic millimeter (mm(3)) and all had some proliferative response to the mitogen phytohemagglutinin. Four infants had rash, lymphadenopathy, and oligoclonal populations of T cells in the periphery. Five of 6 patients are alive at the follow-up interval of 15 months to 30 months. The 5 surviving patients developed a mean of 983 host CD3(+) T cells/mm(3) (range, 536/mm(3)-1574/mm(3)), a mean of 437 recent thymic emigrants/mm(3) (range, 196/mm(3)-785/mm(3)), and normal proliferative responses to phytohemaglutinin (follow-up from day 376 to day 873). The TCR repertoire became polyclonal in patients who presented with oligoclonal T cells. All patients had thymopoiesis on allograft biopsy. Postnatal thymus transplantation after treatment with Thymoglobulin shows promise as therapy for infants with complete DiGeorge syndrome who have significant proliferative responses to mitogens or who develop rash, lymphadenopathy, and oligoclonal T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2003-08-2984 | DOI Listing |
Nature
November 2024
Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK.
T cells develop from circulating precursor cells, which enter the thymus and migrate through specialized subcompartments that support their maturation and selection. In humans, this process starts in early fetal development and is highly active until thymic involution in adolescence. To map the microanatomical underpinnings of this process in pre- and early postnatal stages, we established a quantitative morphological framework for the thymus-the Cortico-Medullary Axis-and used it to perform a spatially resolved analysis.
View Article and Find Full Text PDFCommun Med (Lond)
October 2024
Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK.
Background: The thymus, responsible for T cell-mediated adaptive immune system, has a structural and functional complexity that is not yet fully understood. Until now, thymic anatomy has been studied using histological thin sections or confocal microscopy 3D reconstruction, necessarily for limited volumes.
Methods: We used Phase Contrast X-Ray Computed Tomography to address the lack of whole-organ volumetric information on the microarchitecture of its structural components.
Semin Immunol
November 2024
Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina. Electronic address:
Hematopoiesis- the formation of blood cell components- continually replenishes the blood system during embryonic development and postnatal lifespans. This coordinated process requires the synchronized action of a broad range of cell surface associated proteins and soluble mediators, including growth factors, cytokines and lectins. Collectively, these mediators control cellular communication, signalling, commitment, proliferation, survival and differentiation.
View Article and Find Full Text PDFDev Cell
October 2024
School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 2A1, Canada. Electronic address:
Anat Histol Embryol
November 2024
Laboratory of Animal Production, Biotechnologies and Health (PABIOS), Department of Veterinary Sciences, Institute of Agriculture and Veterinary Sciences Taoura, University of Souk Ahras, Souk Ahras, Algeria.
The thymus, a primary lymphoid organ, plays a critical role in T lymphocyte development and adaptive immunity. This study focuses on the anatomical, histological and geometric morphometric characteristics of the thymus in dromedary camels (Camelus dromedarius) during postnatal development. Thymus samples were collected from camels aged approximately 4, 8, 12 and 16 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!