A theoretical model, developed previously to assess respirator cartridge service life, was applied to various acetone/styrene binary assault systems. Experimental data, collected for several binary mixtures differing only with respect to the concentration of each of the two compounds, were interpreted in terms of the model. Styrene concentrations varied from 228 to 1578 ppm; the range of acetone concentrations was 92-985 ppm. The specific influence of the compound assault concentrations on respirator cartridge service life was carefully characterized, as break-through curves were generated for both acetone and styrene for each of several different binary systems. Specifically, experimental data for each system were used to determine values of the following theoretical parameters: k'1, tau 1, k'2, tau 2, and Am. These parameters were employed with the theory to generate complete theoretical breakthrough curves and to determine the time-dependence of the weight of each compound adsorbed by the respirator cartridge carbon bed. An interesting phenomenon observed for the acetone/styrene systems was the displacement (from the carbon) of previously adsorbed acetone molecules by styrene molecules. Acetone breakthrough was observed first in each of the systems studied. Following the onset of this breakthrough, the acetone breakthrough concentration was enhanced by the displacement of acetone from the carbon bed by the adsorption of styrene. The theoretical model accurately predicts both this enhancement and the associated breakthrough characteristics of styrene. In addition, the theory is capable of predicting the ratio of the number of displaced acetone molecules to the corresponding number of displacing styrene molecules. For these studies, this ratio ranged from 0.3 to 0.7. The service life of respirator cartridges exposed to acetone/styrene mixtures depends on the assault concentration of each compound and is significantly influenced (shortened) by the displacement phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15298669291360021DOI Listing

Publication Analysis

Top Keywords

respirator cartridge
16
service life
16
theoretical model
12
cartridge service
12
binary systems
8
acetone/styrene mixtures
8
systems experimental
8
experimental data
8
carbon bed
8
acetone molecules
8

Similar Publications

Introduction: Wildland firefighters are exposed through the lungs and skin to particulate matter, fumes, and vapors containing polycyclic aromatic hydrocarbons (PAH). Wearing respiratory protection should reduce pulmonary exposure, but there is uncertainty about the most effective and acceptable type of mask.

Methods: Firefighters from 6 unit crews working with the British Columbia Wildfire Service were approached and those consenting were randomly allocated within each crew to a "no mask" control group or to use 1 of 3 types of masks: X, half-face respirator with P100/multi gas cartridge; Y, cloth with alpaca filter; Z mesh fabric with a carbon filter.

View Article and Find Full Text PDF

Tyvaso DPI: Drug-device characteristics and patient clinical considerations.

Pulm Pharmacol Ther

December 2023

Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA. Electronic address:

Tyvaso DPI is a drug-device combination therapy comprised of a small, portable, reusable, breath-powered, dry powder inhaler (DPI) for the delivery of treprostinil. It is approved for the treatment of pulmonary arterial hypertension and pulmonary hypertension associated with interstitial lung disease. Tyvaso DPI utilizes single-use prefilled cartridges to ensure proper dosing.

View Article and Find Full Text PDF

8-hour performance of loose-fitting powered air-purifying respirators in simulated hospital and coal mine environments.

J Occup Environ Hyg

December 2023

Key Laboratory of Coal Methane and Fire Control, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu, China.

Loose-fitting powered air-purifying respirators (LF-PAPRs) are increasingly used in hospitals and coal mines because of their high comfort and protection level, but the utilization faces the challenges of 8-hr continuous high protection requirements in the hospital environment and the coupling effects of high temperature, high humidity, high dust concentration in coal mines. Based on the self-developed powered air-purifying respirator simulation test system, this study explores the 8-hr changes of supplied airflow, the relative air pressure inside the inlet covering (ΔP), and total inward leakage (TIL) of four models of LF-PAPRs in simulated hospital and coal mine environments. Results show that: (1) In a simulated hospital environment, all four LF-PAPRs showed filter cartridge blockage within 5 ∼ 6 hr of continuous operation; while in the simulated coal mine, three models of LF-PAPRs showed filter cartridge blockage within 3 hr.

View Article and Find Full Text PDF

Introduction And Methods: In this study, we evaluated self-reported respiratory symptoms during agricultural work, respiratory protection use and experience, and perceived value of receiving respirators using Gear Up for Ag Health and Safety Program™ pre- and post-surveys from 703 to 212 young adult hog producers in the United States. To our knowledge, this is one of the most extensive survey data sets on self-reported respiratory symptoms and respiratory protection behaviors of collegiate-aged young adults working in US livestock production.

Results: About one-third (37%) of young adult hog producers stated that they have experienced cough, shortness of breath, fever, and chills after working in dusty areas on the farm.

View Article and Find Full Text PDF

Background: A major concern among health care experts is a shortage of N95 filtering facepiece respirators during a pandemic. If the supply of N95 filtering facepiece respirators becomes limited, reusable elastomeric half-mask respirators (EHMRs) may be used to protect health care workers. The focus of this study was to evaluate the effects on the filter performance of wiping decontamination for EHMR P100 filter cartridges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!