A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Conformational heterogeneity of an equilibrium folding intermediate quantified and mapped by scanning mutagenesis. | LitMetric

It is challenging to experimentally define an energy landscape for protein folding that comprises multiple partially unfolded states. Experimental results are often ambiguous as to whether a non-native state is conformationally homogeneous. Here, we tested an approach combining systematic mutagenesis and a Brønsted-like analysis to reveal and quantify conformational heterogeneity of folding intermediate states. Using this method, we resolved an otherwise apparently homogeneous equilibrium folding intermediate of Borrelia burgdorferi OspA into two conformationally distinct species and determined their relative populations. Furthermore, we mapped the structural differences between these intermediate species, which are consistent with the non-native species that we previously proposed based on native-state hydrogen exchange studies. When treated as a single state, the intermediate ensemble exhibited fractional Phi-values for mutations and Hammond-type behaviors that are often observed for folding transition states. We found that a change in relative population of the two species within the intermediate ensemble explains these properties well, suggesting that fractional Phi-values and Hammond-type behaviors exhibited by folding intermediates and transition states may arise more often from conformational heterogeneity than from a single partial structure. Our results are consistent with the presence of multiple minima in a rugged energy landscape predicted from theoretical studies. The method described here provides a promising means to probe a complex folding energy landscape.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.02.063DOI Listing

Publication Analysis

Top Keywords

conformational heterogeneity
12
folding intermediate
12
energy landscape
12
equilibrium folding
8
intermediate ensemble
8
fractional phi-values
8
hammond-type behaviors
8
transition states
8
folding
7
intermediate
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!