Previously, we have demonstrated a late phase protection of ischemic preconditioning in the microcirculation of cremaster muscle. This microvascular protection was blocked by a non-specific NOS inhibitor. The purpose of present study was to evaluate endothelial function in the terminal arteriole of cremaster muscle after 24-h of ischemic preconditioning followed by 4-h warm ischemia and to evaluate eNOS and iNOS gene and protein expression at 24 h after ischemic preconditioning in the cremaster muscle. A vascular pedicle isolated cremaster muscle in male SD rats underwent 45-min of ischemic preconditioning and 24 h later, 4-h of warm ischemia followed by reperfusion. Endothelial-dependent and -independent vasodilatation was evaluated on day 2 after 4-h ischemia and 60-min of reperfusion. Cremaster muscles were harvested at 24 h after ischemic preconditioning for measuring of eNOS and iNOS gene expression by reverse transcriptase polymerase chain reaction (RT-PCR) and protein expression by western blotting analysis. We found that IPC significantly attenuated endothelial dysfunction induced by 4-h warm ischemia and reperfusion. The expression of eNOS and iNOS mRNA shown a 229% and 135% increase respectively in IPC treated cremaster muscles as compared to normal cremaster muscles (P<0.05). The expression of eNOS and iNOS protein exhibited a 133% and 148% increase respectively in IPC treated cremaster muscles as compared to normal cremaster muscles (P<0.05). There was no statistically significant difference between normal cremaster muscle and sham IPC treated cremaster muscle. The results suggest that IPC preventing vascular endothelial dysfunction from ischemia/reperfusion injury may be due to the enhanced NOS expression. These results combined with the results from our previous studies suggest that IPC-induced microvascular protection in the skeletal muscle may act through a NOS-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.orthres.2003.10.004DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
24
cremaster muscle
16
4-h warm
12
warm ischemia
12
enos inos
12
cremaster muscles
12
endothelial dysfunction
8
late phase
8
preconditioning 4-h
8
inos gene
8

Similar Publications

Objectives: Exercise as a non-pharmacological intervention can exert beneficial effects directly through exosomes crossing the blood-brain barrier and reduce apoptosis after cerebral ischaemia/reperfusion injury (CI/RI). miRNA-124 (miR-124) is present in exosomes and plays an important role in regulating cerebral neurological activity; however, the mechanism of the relationship between exercise and the activity of exosomes and apoptosis after CI/RI remains unclear. Therefore, the present study investigated the effects of exercise preconditioning on cerebral ischemia/reperfusion injury from the perspective of exosomal miR-124 and apoptosis.

View Article and Find Full Text PDF

Remote Ischemic Preconditioning (RIPC) is a therapy characterized by repeated bouts of limb ischemia and reperfusion. RIPC protects against ischemia-reperfusion injury (IRI), and preclinical studies suggest that this is mediated through release of endogenous opioids. We aimed to interrogate the role of endogenous opioids in RIPC-signaling in humans, using an arm model of IRI.

View Article and Find Full Text PDF

Purpose: We designed a study investigating the cardioprotective role of sleep apnea (SA) in patients with acute myocardial infarction (AMI), focusing on its association with infarct size and coronary collateral circulation.

Methods: We recruited adults with AMI, who underwent Level-III SA testing during hospitalization. Delayed-enhancement cardiac magnetic resonance (CMR) imaging was performed to quantify AMI size (percent-infarcted myocardium).

View Article and Find Full Text PDF

Introduction: Arterialized venous flap, like any other flap, will undergo an ischemic reperfusion injury during its transfer process. To overcome this, ischemic preconditioning can be done to provide protection and enhanced flap survival. One of the reliable parameters of flap survival is its temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!