Translation termination in eukaryotes is governed by two interacting release factors, eRF1 and eRF3. The crystal structure of the eEF1alpha-like region of eRF3 from S. pombe determined in three states (free protein, GDP-, and GTP-bound forms) reveals an overall structure that is similar to EF-Tu, although with quite different domain arrangements. In contrast to EF-Tu, GDP/GTP binding to eRF3c does not induce dramatic conformational changes, and Mg(2+) is not required for GDP binding to eRF3c. Mg(2+) at higher concentration accelerates GDP release, suggesting a novel mechanism for nucleotide exchange on eRF3 from that of other GTPases. Mapping sequence conservation onto the molecular surface, combined with mutagenesis analysis, identified the eRF1 binding region, and revealed an essential function for the C terminus of eRF3. The N-terminal extension, rich in acidic amino acids, blocks the proposed eRF1 binding site, potentially regulating eRF1 binding to eRF3 in a competitive manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1097-2765(04)00206-0 | DOI Listing |
Plants (Basel)
September 2024
Seed Biology, UMR7622 CNRS-Sorbonne-Université, 75005 Paris, France.
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L.
View Article and Find Full Text PDFNucleic Acids Res
October 2024
Department of Experimental Medicine, University of Lund, 221 84 Lund, Sweden.
The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
The ethylene-regulated hypocotyl elongation of involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia.
Eukaryotic release factor eRF1, encoded by the gene, recognizes stop codons and induces peptide release during translation termination. produces several different transcripts as a result of alternative splicing, from which two eRF1 isoforms can be formed. Isoform 1 codes well-studied canonical eRF1, and isoform 2 is 33 amino acid residues shorter than isoform 1 and completely unstudied.
View Article and Find Full Text PDFPlants (Basel)
June 2024
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11765, Egypt.
Salinity stress poses a significant threat to crop productivity worldwide, necessitating effective mitigation strategies. This study investigated the phytochemical composition and potential of grape seed extract (GSE) to mitigate salinity stress effects on faba bean plants. GC-MS analysis revealed several bioactive components in GSE, predominantly fatty acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!