Intrastriatal administration of the succinate dehydrogenase (SDH) inhibitor malonate produces neuronal injury by a "secondary excitotoxic" mechanism involving the generation of reactive oxygen species (ROS). Recent evidence indicates dopamine may contribute to malonate-induced striatal neurodegeneration; infusion of malonate causes a pronounced increase in extracellular dopamine and dopamine deafferentation attenuates malonate toxicity. Inhibition of the catabolic enzyme monoamine oxidase (MAO) also attenuates striatal lesions induced by malonate. In addition to forming 3,4-dihydroxyphenylacetic acid, metabolism of dopamine by MAO generates H2O2, suggesting that dopamine metabolism may be a source of ROS in malonate toxicity. There are two isoforms of MAO, MAO-A and MAO-B. In this study, we have investigated the role of each isozyme in malonate-induced striatal injury using both pharmacological and genetic approaches. In rats treated with either of the specific MAO-A or -B inhibitors, clorgyline or deprenyl, respectively, malonate lesion volumes were reduced by 30% compared to controls. In knock-out mice lacking the MAO-A isoform, malonate-induced lesions were reduced by 50% and protein carbonyls, an index ROS formation, were reduced by 11%, compared to wild-type animals. In contrast, mice deficient in MAO-B showed highly variable susceptibility to malonate toxicity precluding us from determining the precise role of MAO-B in this form of brain damage. These findings indicate that normal levels of MAO-A participate in expression of malonate toxicity by a mechanism involving oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:nere.0000018845.82808.45 | DOI Listing |
Molecules
January 2025
Department of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland.
In this study, the effectiveness of three choline chloride (ChCl)-based deep eutectic solvents (DESs) formed using malonic acid (MalA), glycerol (Gly), and glucose (Glu) as hydrogen bond donors and two conventional solvents (50% methanol and 50% ethanol) for ultrasonic-assisted extraction (UAE) of antioxidant compounds from four herbs (chamomile, lemon balm, nettle, and spearmint) were estimated. The antioxidant capacity (AC) of the obtained herb extracts was determined by the modified 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and cupric reducing antioxidant capacity (CUPRAC) methods. Profiles of phenolic acids, flavonoid aglycones, and flavonoid glycosides in the green and conventional herb extracts were quantitatively analyzed using ultra-performance liquid chromatography (UPLC).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia.
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera and , which exhibited a high degree of oil biodegradation (72-96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid.
View Article and Find Full Text PDFJ Xenobiot
November 2024
Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
Polyethylene and polystyrene are massively used around the world in various applications and are the most abundant plastic waste. Once in the marine environment, under the influence of physical and chemical factors, plastic products degrade, changing from the size category of macroplastics to microplastics. In order to study the effect of plastic on marine organisms, we modeled the conditions of environmental pollution with different-sized plastic-polystyrene microparticles of 0.
View Article and Find Full Text PDFJ Hazard Mater
October 2024
Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd., Hung Hom, Hong Kong; Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Hong Kong. Electronic address:
Halophenols are toxic and persistent pollutants in water environments which poses harm to various organisms. Due to their high stability and long residence time, ultraviolet radiation, heavy metals and oxidizing agents have been largely adopted on treating these compounds. However, these treatment methods could pose toxicity or hazardous risks to the marine environment and plant operators.
View Article and Find Full Text PDFChemMedChem
August 2024
Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India.
New 4-nitrobenzyl derivatives were designed and synthesised by nucleophilic substitution reactions of 4-nitrobenzyl bromide with malonic acid and its derivatives. The synthesised molecules were characterised using mass analysis and spectroscopic techniques and tested for their antioxidant properties using various methods, such as nitric oxide, DPPH, and hydrogen peroxide radical scavenging methods. The anti-inflammatory activities of the molecules were assessed using RBC membrane stabilisation and albumin denaturation methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!