S100B belongs to a family of calcium-binding proteins involved in cell cycle and cytoskeleton regulation. We observed an inhibitory effect of S100B on glial fibrillary acidic protein (GFAP) phosphorylation, when stimulated by cAMP or Ca2+/calmodulin, in a cytoskeletal fraction from primary astrocyte cultures. We found that S100B has no direct effect on CaM KII activity, the major kinase in this cytoskeletal fraction able to phosphorylate GFAP. The inhibition of GFAP phosphorylation is most likely due to the binding of S100B to the phosphorylation sites on this protein and blocking the access of these sites to the protein kinases. This inhibition was dependent on Ca2+. However, Zn2+ could substitute for Ca2+. The inhibitory effect of S100B was prevented by TRTK-12, a peptide that blocks S100B interaction with several target proteins including glial fibrillary acidic protein. These data suggest a role for S100B in the assembly of intermediate filaments in astrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:nere.0000018844.51009.40 | DOI Listing |
Neuroscience
December 2011
Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA.
S100B, a glial-secreted protein, is believed to play a major role in neurodegeneration in Alzheimer's disease, Down syndrome, traumatic brain injury, and spinocerebellar ataxia type 1 (SCA1). SCA1 is a trinucleotide repeat disorder in which the expanded polyglutamine mutation in the protein ataxin-1 primarily targets Purkinje cells of the cerebellum. Currently, the exact mechanism of S100B-mediated Purkinje cell damage in SCA1 is not clear.
View Article and Find Full Text PDFNeurochem Res
April 2004
Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
S100B belongs to a family of calcium-binding proteins involved in cell cycle and cytoskeleton regulation. We observed an inhibitory effect of S100B on glial fibrillary acidic protein (GFAP) phosphorylation, when stimulated by cAMP or Ca2+/calmodulin, in a cytoskeletal fraction from primary astrocyte cultures. We found that S100B has no direct effect on CaM KII activity, the major kinase in this cytoskeletal fraction able to phosphorylate GFAP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!