Simulation education is becoming increasingly popular. Many institutions and programs find themselves in a situation where they have an identified need for the simulation education but few resources to reference. Most programs purchase first and ask questions later, leaving faculty with equipment with which they are unfamiliar and few, if any, resources to contact. Developing a simulation program involves more steps than one would think. Developing a vision and business plan are paramount. Only with a well-developed business plan will decision maker buy-in occur. Consideration must also be given to facility construction or renovation, equipment purchase, faculty development and training, and most important, curriculum development. These steps are not intuitive. This article describes these steps in a concise and manageable way and is intended to serve as a template that hopefully will increase the likelihood of developing successful and efficient simulation education programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3928/01484834-20040401-02 | DOI Listing |
Fatigue cracking of rib-to-deck conventional single-sided welded joints is a prevalent issue in orthotropic steel decks (OSDs), significantly impacting their structural integrity and durability. Rib-to-deck innovative double-sided welded joints have the potential to enhance the fatigue resistance of OSD. However, Welding Residual Stresses (WRS) significantly influence the fatigue life of these joints, mandating its consideration in fatigue assessments.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.
View Article and Find Full Text PDFSci Rep
December 2024
College of Electrical and Information Engineering, Quzhou University, Quzhou, 324000, China.
A new kernel function, termed the closed-box kernel function, has been developed to address numerical simulation of transient heat conduction in the same medium. Firstly, this method is versatile and not limited to specific industrial scenarios or designated materials. Secondly, the method solves the spatial temperature at each time point only once, eliminating the need for multiple iterations.
View Article and Find Full Text PDFSci Rep
December 2024
Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.
View Article and Find Full Text PDFSci Rep
December 2024
College of Education, Department of Physics, Misan University, Amarah, Iraq.
This study introduces a high-performance 4-channel Metal-Insulator-Metal (MIM) diplexer, employing silver and Teflon, optimized for advanced photonic applications. The proposed diplexer, configured with two novel band-pass filters (BPFs), operates across four distinct wavelength bands (843 nm, 1090 nm, 1452 nm, 1675 nm) by precisely manipulating the passband dimensions. Utilizing Finite-Difference Time-Domain (FDTD) simulations, the designed diplexer achieves exceptional sensitivity values of 3500 nm/RIU, 4250 nm/RIU, 3375 nm/RIU, and 4003 nm/RIU, along with high figures of merit (FOM) ranging from 113.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!