Cancer chemotherapeutic strategies should be devised to provide higher tumor response and lower toxicity for combination chemotherapy. Genistein has been shown to inhibit the growth of various cancer cells in vitro and in vivo without toxicity to normal cells. The antitumor effects of genistein could be in part due to inactivation of NF-kappaB activity. In contrast, chemotherapeutic agents inadvertently induce NF-kappaB activity, which may lead to chemoresistance. In this study, we investigated whether the inactivation of NF-kappaB by genistein would enhance the efficacy of chemotherapeutic agents. BxPC-3 pancreatic cancer cells were pretreated with 30 micromol/L genistein for 24 hours and then exposed to lower concentrations of chemotherapeutic agents for an additional 24 hours. Cell growth inhibition assay, apoptosis assay, and NF-kappaB EMSA were performed. The combination of 30 micromol/L genistein with 1 nmol/L docetaxel or 100 nmol/L cisplatin elicited significantly greater inhibition of cell growth compared with either agent alone. The combination treatment induced more apoptosis in BxPC-3 cells compared with single agents. Moreover, the NF-kappaB activity was significantly increased within 2 hours of docetaxel or cisplatin treatment, and the NF-kappaB-inducing activity of these agents was completely abrogated in cells pretreated with genistein. These results clearly suggest that genistein pretreatment, which inactivates NF-kappaB activity, together with other cellular effects of genistein, may contribute to increased cell growth inhibition and apoptosis inducing effects of nontoxic doses of docetaxel and cisplatin, which could be a novel strategy for the treatment of pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00006676-200405000-00020 | DOI Listing |
Endocrine
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, P. R. China.
High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.
View Article and Find Full Text PDFMyc hyperactivation coordinately regulates numerous metabolic processes to drive lymphomagenesis. Here, we elucidate the temporal and functional relationships between the medley of pathways, factors, and mechanisms that cooperate to control redox homeostasis in Myc-overexpressing B cell lymphomas. We find that Myc overexpression rapidly stimulates the oxidative pentose phosphate pathway (oxPPP), nucleotide synthesis, and mitochondrial respiration, which collectively steers cellular equilibrium to a more oxidative state.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!