Xanthine oxidase (XOD) consists of two identical subunits. For the past 50 years or so, it was assumed that the two subunits carry out catalysis independently. Herein, we report that the presence of 6-formylpterin (6FP) or other substrates (such as xanthine or xanthopterin) at one of the two active sites affects the binding affinity and catalysis rate of 6FP at the other. When the two XOD active sites were occupied by two 6FPs simultaneously, the conversion rate (2.8 x 10(-3) s(-1)) of 6FP to 6CP is 2.95-fold faster than the conversion rate (0.95 x 10(-3) s(-1)) in the case of single 6FP bound condition. The presence of xanthine can accelerate the catalysis rate of 6FP by XOD as well as the activity-recovering rate of alloxanthine-inhibited XOD. Our experimental observations demonstrate unambiguously that the two XOD subunits are strongly cooperative in both binding and catalysis. The inhibition constant (Ki) of 6FP toward XOD was measured by a stopped-flow method to be 0.94 nM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi035467b | DOI Listing |
Biochemistry
April 2004
Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan.
Xanthine oxidase (XOD) consists of two identical subunits. For the past 50 years or so, it was assumed that the two subunits carry out catalysis independently. Herein, we report that the presence of 6-formylpterin (6FP) or other substrates (such as xanthine or xanthopterin) at one of the two active sites affects the binding affinity and catalysis rate of 6FP at the other.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!