In an earlier study we showed that a blend of thermoresponsive and nonthermoresponsive hydroxyalkylcelluloses could be used to create a thermally tunable polymer network for double-stranded (ds) DNA separation. Here, we show the generality of this approach using a family of polymers suited to a wider range of DNA separations: a blended mixture of N,N-dialkylacrylamide copolymers with different thermoresponsive behaviors. A mixture of 47% w/w N,N-diethylacrylamide (DEA)/53% w/w N,N-dimethylacrylamide (DMA) (DEA47; thermoresponsive, transition temperature = 55 degrees C in water) and 30% w/w DEA/70% w/w DMA (DEA30; nonthermoresponsive, transition temperature > 85 degrees C in water) copolymers in the ratio of 1:5 w/w DEA47:DEA30 was used to separate a dsDNA restriction digest (PhiX174-HaeIII). We investigated the effects of changing mesh size on dsDNA separation, as controlled by temperature. We observed good DNA separation performance with the copolymer blend at temperatures ranging from 25 degrees C to 48 degrees C. The separation selectivity was evaluated quantitatively for certain DNA fragment pairs as a function of temperature. The results were compared with those obtained with a control matrix consisting only of the nonthermoresponsive DEA30. Different DNA fragment pairs of various sizes show distinct temperature-dependent selectivities. Over the same temperature range, no significant temperature dependence of selectivity is observed for these DNA fragment pairs in the nonthermoresponsive control matrix. Overall, the results show similar trends in the temperature dependency of separation selectivity to what was previously observed in hydroxyalkylcellulose blends, for the same DNA fragment pairs. Finally, we showed that a ramped temperature scheme enables improved separation in the blended copolymer matrix for both small and large DNA fragments, simultaneously in a single capillary electrophoresis (CE) run.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200305785DOI Listing

Publication Analysis

Top Keywords

dna fragment
16
fragment pairs
16
dna
9
blends dna
8
thermally tunable
8
mesh size
8
dna separation
8
temperature
8
transition temperature
8
temperature degrees
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!