AI Article Synopsis

Article Abstract

Amphibians are a vertebrate group transitional between aquatic and terrestrial environments. Consequently, both increases and decreases in blood volume are a natural biological stress associated with aquatic and terrestrial environments. In comparison with other vertebrate classes, anuran amphibians have the most rapid compensation and greatest capacity to compensate for changes in blood volume and survive dehydration. Unlike in mammals, a Starling transcapillary uptake mechanism does not account for this fluid mobilization because lymph flow is a substantial and important additional factor. The role of the lymphatic system in flux of fluids back into the circulation varies interspecifically in anurans and is an order of magnitude greater in anurans than in mammals. Current models of lymph movement in anurans are centered on the role of lymph hearts, but we suggest that these models are untenable. We present a new hypothesis for lymph movement involving (1) pressure differences created by compartmentalization of the hind limb lymph spaces into sacs of serially graded compliance to move lymph horizontally and (2) both negative and positive pressure differences created by contraction of skeletal muscles to move lymph vertically. The primary function of some of these skeletal muscles may be solely for lymph movement, but some may also be involved with other functions such as pulmonary ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1086/420954DOI Listing

Publication Analysis

Top Keywords

lymph movement
16
lymph
10
aquatic terrestrial
8
terrestrial environments
8
blood volume
8
pressure differences
8
differences created
8
move lymph
8
skeletal muscles
8
lymph pools
4

Similar Publications

Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies. Our previous studies revealed necroptosis-related lncRNA ENSG00000253385.1 was an independent prognostic factor for ESCC.

View Article and Find Full Text PDF

LINC01305 and LAD1 Co-Regulate CTTN and N-WASP Phosphorylation, Mediating Cytoskeletal Reorganization to Promote ESCC Metastasis.

Mol Carcinog

January 2025

Institute of Tissue Engineering and Stem Cells, Beijing Anzhen Nanchong Hospital of Capital Medical University, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.

Esophageal squamous cell carcinoma (ESCC) is prone to metastasis and is a leading cause of mortality. The cytoskeleton is closely related to cell morphology and movement; however, little research has been conducted on ESCC metastasis. In this study, we found that the anchoring filament protein ladinin 1 (LAD1) specifically binds to LINC01305 for co-regulating the level of modulating cortactin proteins (CTTN) and neuronal Wiskott-Aldrich syndrome protein (N-WASP) phosphorylation, which mediates cytoskeletal reorganization and affects the metastasis of ESCC cells.

View Article and Find Full Text PDF

Solute carrier family 25 member 1 (SLC25A1) affects lipid metabolism and energy regulation in multiple types of tumor cell, affecting their proliferation and survival. To the best of our knowledge, however, the impact of SLC25A1 on the proliferation and survival of esophageal squamous cell carcinoma (ESCC) cells has yet to be explored. Here, SLC25A1 expression was detected in ESCC tissues and cell lines.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is an important cause of death. Molecular targeted therapy and immunotherapy are progressing rapidly. It is very important to explore the pathogenesis pathways of GC and provide strong support for its treatment.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!