Inverted meiosis and meiotic drive in mealybugs.

Chromosoma

Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Viterbo, Italy.

Published: May 2004

In the males of lecanoid coccids, or mealybugs, an entire, paternally derived, haploid chromosome set becomes heterochromatic after the seventh embryonic mitotic cycle. In females, both haploid sets are euchromatic throughout the life cycle. In mealybugs, as in all homopteran species, chromosomes are holocentric. Holocentric chromosomes are characterized by the lack of a localized centromere and consequently of a localized kinetic activity. In monocentric species, sister chromatid cohesion and monopolar attachment play a pivotal role in regulating chromosome behavior during the two meiotic divisions. Both these processes rely upon the presence of a single, localized centromere and as such cannot be properly executed by holocentric chromosomes. Here we furnish further evidence that meiosis is inverted in both sexes of mealybugs and we suggest how this might represent an adaptation to chromosome holocentrism. Moreover, we reveal that at the second meiotic division in males a monopolar spindle is formed, to which only euchromatic chromosomes become attached. By this mechanism the paternally derived, heterochromatic, haploid chromosome set strictly segregates from the euchromatic one, and it is then excluded from the genetic continuum as a result of meiotic drive.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00412-004-0278-4DOI Listing

Publication Analysis

Top Keywords

meiotic drive
8
paternally derived
8
haploid chromosome
8
chromosome set
8
holocentric chromosomes
8
localized centromere
8
inverted meiosis
4
meiotic
4
meiosis meiotic
4
mealybugs
4

Similar Publications

Maternal ELL3 loss-of-function leads to oocyte aneuploidy and early miscarriage.

Nat Struct Mol Biol

January 2025

Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.

Up to an estimated 10% of women experience miscarriage in their lifetimes. Embryonic aneuploidy is a leading cause for miscarriage, infertility and congenital defects. Here we identify variants of ELL3, a gene encoding a transcription elongation factor, in couples who experienced consecutive early miscarriages due to embryonic aneuploidy.

View Article and Find Full Text PDF

Transcription factors induce differential splicing of duplicated ribosomal protein genes during meiosis.

Nucleic Acids Res

January 2025

Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.

In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

(maize) is both an agronomically important crop and a powerful genetic model system with an extensive molecular toolkit and genomic resources. With these tools, maize is an optimal system for cytogenetic study, particularly in the investigation of chromosome segregation. Here, we review the advances made in maize chromosome segregation, specifically in the regulation and dynamic assembly of the mitotic and meiotic spindle, the inheritance and mechanisms of the abnormal chromosome variant Ab10, the regulation of chromosome-spindle interactions via the spindle assembly checkpoint, and the function of kinetochore proteins that bridge chromosomes and spindles.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!