A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet structure. | LitMetric

Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet structure.

FEBS Lett

Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS and Universités d'Aix-Marseille I and II, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

Published: April 2004

Among mammals, camelids have a unique immunological system since they produce functional antibodies devoid of light chains and CH1 domains. To bind antigens, whether they are proteins or haptens, camelids use the single domain VH from their heavy chain (VHH). We report here on such a llama VHH domain (VHH-R9) which was raised against a hapten, the RR6 red dye. This VHH possesses the shortest complementarity determining region 3 (CDR3) among all the known VHH sequences and nevertheless binds RR6 efficiently with a K(d) value of 83 nM. However, the crystal structure of VHH-R9 exhibits a striking feature: its CDR3 and its last beta-strand (beta9) do not follow the immunoglobulin VH domain fold, but instead extend out of the VHH molecular boundary and associate with a symmetry-related molecule. The two monomers thus form a domain-swapped dimer which establishes further contacts with symmetry-related molecules and build a crystal-wide beta-sheet structure. The driving force of the dimer formation is probably the strain induced by the short CDR3 together with the cleavage of the first seven residues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0014-5793(04)00304-7DOI Listing

Publication Analysis

Top Keywords

llama vhh
8
vhh domain
8
crystal-wide beta-sheet
8
beta-sheet structure
8
vhh
6
domain
5
domain swapping
4
swapping llama
4
domain builds
4
builds crystal-wide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!