Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The endoplasmic reticulum (ER) contains a highly effective protein quality control system eliminating malfolded proteins by a mechanism called ER-associated protein degradation (ERAD). Here, we unravel the topology of Der1p, a previously identified component of the ERAD system. Der1p contains four transmembrane domains, its N- and C-terminus protrude into the cytoplasm and contribute to its function. Additionally, we describe a yeast homologue of Der1p, Dfm1p, which does not seem to be involved in ERAD. In contrast, a Caenorhabditis elegans orthologue of Der1p, R151.6, is capable of complementing der1-defective phenotypes in yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.femsyr.2004.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!