Despite the increasing number of applications of biosensors in many fields, the construction of a steady biosensor remains still challenging. The high selectivity and stability of molecularly imprinted polymers for the template molecule make them ideal alternatives as recognition elements for sensors. In this work, the fabrication and characterization of biosensor based on molecularly imprinted electrosynthesized polymers is reported as the first case of imprinting sorbitol. A relevant molecularly imprinted film is prepared by o-phenylenediamine (o-PD) using the electrochemical method. Quartz crystal microbalance is employed as a sensitive apparatus of biosensor for the determination of sorbitol. An equation is deduced to characterize the interaction between molecularly imprinted films and the template. A linear relationship between the frequency shift and the concentration of analyte in the range of 1-15 mM was found. The detection limit is about 1mM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2003.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!