Some higher plant species have developed heavy metal tolerance strategies which enable them to survive and reproduce in highly metal-contaminated soils. We have investigated such heavy metal uptake and accumulation strategies of two absolute metallophyte species (Armeria maritima ssp. halleri and Cardaminopsis halleri) and one pseudometallophyte (Agrostis tenuis) growing near a former metal smelter. Samples of plant parts and soil were analysed for Zn, Cd, Pb, and Cu. In soil, there were two dominant types of metal concentration gradients with depth. Under the absolute metallophytes, extremely high metal contents were measured in the surficial Ah horizon, followed by a strong decrease in the underlying soil horizons (L(11) and L(12)). Under the pseudometallophyte, metal concentrations in the Ah horizon were much lower and fewer differences were observed in metal concentrations among the Ah, L(11), and L(12) horizons. The concentrations of Zn, Cd, Pb, and Cu in Agrostis tenuis roots were greater than concentrations in leaves, indicating significant metal immobilisation by the roots. For C. halleri, Zn and Cd concentrations in leaves were >20,000 and >100 mg kg(-1), respectively, indicating hyperaccumulation of these elements. Armeria maritima ssp. halleri exhibited root concentrations of Pb and Cu that were 20 and 88 times greater, respectively, than those in green leaves, suggesting an exclusion strategy by metal immobilisation in roots. However, Zn, Cd, Pb, and Cu concentrations in brown leaves of Armeria maritima ssp. halleri were 3-8 times greater than in green leaves, suggesting a second strategy, i.e. detoxification mechanism by leaf fall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0269-7491(99)00262-6 | DOI Listing |
Sci Rep
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India.
Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.
View Article and Find Full Text PDFSci Data
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
This contribution presents a comprehensive extension of the QM9 dataset (originally at 133 K molecules) with the calculation of G4MP2 enthalpies for 9,841 molecules, featuring up to nine heavy atoms. We present QM9-LOHC, a (de)hydrogenation dataset of 10,373 reactions, including a minimum of 5.5% weight hydrogen storage capacity in line with the Department of Energy standards for Liquid Organic Hydrogen Carriers (LOHC).
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!