Cdc50p, a transmembrane protein localized to the late endosome, is required for polarized cell growth in yeast. Genetic studies suggest that CDC50 performs a function similar to DRS2, which encodes a P-type ATPase of the aminophospholipid translocase (APT) subfamily. At low temperatures, drs2Delta mutant cells exhibited depolarization of cortical actin patches and mislocalization of polarity regulators, such as Bni1p and Gic1p, in a manner similar to the cdc50Delta mutant. Both Cdc50p and Drs2p were localized to the trans-Golgi network and late endosome. Cdc50p was coimmunoprecipitated with Drs2p from membrane protein extracts. In cdc50Delta mutant cells, Drs2p resided on the endoplasmic reticulum (ER), whereas Cdc50p was found on the ER membrane in drs2Delta cells, suggesting that the association on the ER membrane is required for transport of the Cdc50p-Drs2p complex to the trans-Golgi network. Lem3/Ros3p, a homolog of Cdc50p, was coimmunoprecipitated with another APT, Dnf1p; Lem3p was required for exit of Dnf1p out of the ER. Both Cdc50p-Drs2p and Lem3p-Dnf1p were confined to the plasma membrane upon blockade of endocytosis, suggesting that these proteins cycle between the exocytic and endocytic pathways, likely performing redundant functions. Thus, phospholipid asymmetry plays an important role in the establishment of cell polarity; the Cdc50p/Lem3p family likely constitute potential subunits specific to unique P-type ATPases of the APT subfamily.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452594 | PMC |
http://dx.doi.org/10.1091/mbc.e03-11-0829 | DOI Listing |
Unlabelled: infections cause over 12,000 deaths and an estimated one billion dollars in healthcare costs annually in the United States. The cell membrane is an essential structure that is important for protection from the extracellular environment, signal transduction, and transport of nutrients. The polar membrane lipids of are ∼50% glycolipids, a higher percentage than most other organisms.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan.
Improving human health and comfort in buildings requires efficient temperature regulation. Temperature control system has a significant contribution in minimizing the impact of climate change. Temperature control system is used in industry to control temperature.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.
View Article and Find Full Text PDFActa Biomater
January 2025
Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, United Kingdom.
The quantitative characterization of the structure of biomineral surfaces is needed for guiding regenerative strategies. Current techniques are compromised by a requirement for extensive sample preparation, limited length-scales, or the inability to repeatedly measure the same surface over time and monitor structural changes. We aim to address these deficiencies by developing Calcium (Ca) K-edge Polarisation Induced Contrast X-ray Fluorescence (PIC-XRF) to quantify hydroxyapatite (HAp) crystallite structural arrangements in high and low textured surfaces.
View Article and Find Full Text PDFDev Biol
January 2025
Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France. Electronic address:
In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!