Electronic transport in single-molecule magnets on metallic surfaces.

Phys Rev Lett

Department of Physics, Sejong University, Seoul 143-747, Republic of Korea.

Published: April 2004

An electron transport is studied in the system that consists of a scanning tunneling microscopy, single-molecule magnet metal. Because of quantum tunneling of magnetization in a single-molecule magnet, linear response conductance exhibits stepwise behavior with increasing longitudinal field, and each step is maximized at a certain value of field sweeping speed. The conductance at each step oscillates as a function of the additional transverse magnetic field along the hard axis. A rigorous theory is presented that combines the exchange model with the Landau-Zener model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.92.137203DOI Listing

Publication Analysis

Top Keywords

single-molecule magnet
8
electronic transport
4
transport single-molecule
4
single-molecule magnets
4
magnets metallic
4
metallic surfaces
4
surfaces electron
4
electron transport
4
transport studied
4
studied system
4

Similar Publications

Background: Biomarkers are needed to track progression in MS trials. Neurofilament heavy chain (NfH) has been underutilized due to assay limitations.

Objective: To investigate the added value of cerebrospinal fluid (CSF) NfH in secondary progressive multiple sclerosis (SPMS) using contemporary immunoassays.

View Article and Find Full Text PDF

A 1D coordination compound made of a photochromic dithienylethene linker and [Dy(Tp2-py)F]+ units (with Tp2-py = tris(3-(2-pyridyl)pyrazolyl)hydroborate) and having tetrakis[3,5-bis(trifluoromethyl)phenyl]borate counterions is reported. Full photoconversion from the closed isomer to the open isomer of the dithienyethene within single crystals allow for monitoring of the transformation by photocrystallography. Magnetic slow relaxation as well as magnetic hysteresis are observed and can be both modulated upon light irradiation.

View Article and Find Full Text PDF

A post-assembly conformational change makes the SARS-CoV-2 polymerase elongation-competent.

bioRxiv

January 2025

Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.

Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

The synthesis and structural characterisation of [Ln(Tp)]I (1-Ln; Ln = La, Ce, Pr, Nd) (Tp = hydrotris(3-(2'-furyl)-pyrazol-1-yl)borate) have been reported as an isomorphous series adopting pseudo-icosahedral ligand field geometries. Continuous shape measurement (CShM) analyses on the crystal field environments of 1-Ln show the smallest values yet reported for complexes employing two hexadentate ligands (-scorpionate environments), with the smallest belonging to 1-La. Single-ion magnetism for 1-Ce, 1-Pr and 1-Nd was probed with ac magnetic susceptibility studies revealing slow magnetic relaxation for 1-Nd in applied magnetic fields and in zero-applied field for 1-Ce, which is a rare observation for Ce(III)-based single-ion magnets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!