We introduce a model for friction in a system of two rigid plates connected by bonds (springs) and experiencing an external drive. The macroscopic frictional properties of the system are shown to be directly related to the rupture and formation dynamics of the microscopic bonds. Different regimes of motion are characterized by different rates of rupture and formation relative to the driving velocity. In particular, the stick-slip regime is shown to correspond to a cooperative rupture of the bonds. Moreover, the notion of static friction is shown to be dependent on the experimental conditions and time scales. The overall behavior can be described in terms of two Deborah numbers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.135503 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Newcastle, Callaghan, NSW, Australia.
Background: UK Biobank data show mutations related to the iron disorder hemochromatosis can approximately double the risk of dementia, in particular clinically diagnosed vascular dementia. Insights into the etiology of this dementia may be provided by cerebrovasculopathy in our new "Aβ+Iron" mouse model, which combines hemochromatosis-related mutations and amyloidosis, with increases in soluble Aβ species and plaques. This was created by crossing an established APP/PS1 model of β-amyloidosis with our reported HfexTfr2 model of hemochromatosis-related mutations exhibiting brain iron dyshomeostasis (Heidari Mol.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Rheumatology, University Clinical Hospital No. 1 Szczecin, Szczecin, Poland.
Skeletal muscle relaxants have their place in everyday use in numerous anesthesiological procedures, such as preparing a patient for surgery, supporting mechanical ventilation, and performing effective intubation. These drugs can be divided, based on their mechanism of action, into depolarizing skeletal relaxants, such as succinylcholine, and non-depolarizing skeletal muscle relaxants. Non-depolarizing agents are further categorized, based on their structure, into steroidal (eg, rocuronium) and benzylisoquinoline (eg, atracurium) compounds.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Animal Science and Technology, Southwest University, Chongqing, China.
Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, Nihon University Hospital, Itabashi-ku, Tokyo, Japan.
We investigated the influence of false lumen (FL) status on the systemic inflammatory response triggered by acute aortic dissection (AAD) using cytokine profiling. The study included 44 patients with AAD. Patients were divided between those with a thrombosed FL (Group T, n = 21) and those with a non-thrombosed FL (Group P, n = 23).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!