We calculate neutrino-induced fission cross sections for selected nuclei with Z=84-92. We show that these reactions populate the daughter nucleus at excitation energies where shell effects are significantly washed out, effectively reducing the fission barrier. If the r process occurs in the presence of a strong neutrino fluence, and electron neutrino average energies are sufficiently high, perhaps as a result of matter-enhanced neutrino flavor transformation, then neutrino-induced fission could lead to significant alteration in the r-process flow in slow outflow scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.92.111101 | DOI Listing |
Rep Prog Phys
August 2017
International Research Center for Big-Bang Cosmology and Element Genesis, and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, People's Republic of China. Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan. Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-033, Japan.
Current models for the r process are summarized with an emphasis on the key constraints from both nuclear physics measurements and astronomical observations. In particular, we analyze the importance of nuclear physics input such as beta-decay rates; nuclear masses; neutron-capture cross sections; beta-delayed neutron emission; probability of spontaneous fission, beta- and neutron-induced fission, fission fragment mass distributions; neutrino-induced reaction cross sections, etc. We highlight the effects on models for r-process nucleosynthesis of newly measured β-decay half-lives, masses, and spectroscopy of neutron-rich nuclei near the r-process path.
View Article and Find Full Text PDFPhys Rev Lett
March 2004
Departement für Physik, Universität Basel, Basel, Switzerland.
We calculate neutrino-induced fission cross sections for selected nuclei with Z=84-92. We show that these reactions populate the daughter nucleus at excitation energies where shell effects are significantly washed out, effectively reducing the fission barrier. If the r process occurs in the presence of a strong neutrino fluence, and electron neutrino average energies are sufficiently high, perhaps as a result of matter-enhanced neutrino flavor transformation, then neutrino-induced fission could lead to significant alteration in the r-process flow in slow outflow scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!