Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a Müller cell culture preparation from young rats was used to investigate the regulation of GLAST transport activity in native cells. Immunohistochemical analysis confirmed GLAST to be the predominant glutamate transporter expressed by the cells through five passages. [3H]-glutamate uptake assays showed the typical Na+-dependent glutamate transport which was blocked by L-(-)-threo-3-hydroxyaspartate (L-THA), a competitive inhibitor. Glutamate transport was decreased significantly in Müller cells exposed to phorbol-12-myristate-13-acetate (PMA), a protein kinase C (PKC) activator. A similar effect on [3H]-D-aspartate (nonmetabolizable glutamate analog) uptake ruled out the possibility that the decrease was a consequence of altered metabolism. However, PMA did not affect Na+-dependent [3H]-glycine transport, indicating the absence of a nonspecific change in the electrochemical gradients. The PMA effect on glutamate uptake was evidenced by partial blocking with a specific PKC inhibitor, bisindolymaleimide II (Bis II). Activation of PKC did not change the Km, but the Vmax was significantly reduced. Image analysis of Müller cells with biotinylated cell membranes immunolabeled with GLAST shows a reduction of GLAST in the plasma membrane. In conclusion, these data show that rat Müller cells in primary cultures express GLAST and that PKC activation affects GLAST transport activity by decreasing cell surface expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0952523803206039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!