Despite early detection of breast cancer, patients' survival may be compromised if the breast cancer cells (BCCs) enter the bone marrow (BM). It is highly probable that BCCs enter the BM long before clinical detection. An in vitro coculture model with BM stroma and BCCs (cell lines; primary cells from stage III BC, n = 7, and stage M0, n = 3) mimicked early entry of BCCs into the BM. In coculture, BCCs exhibit contact inhibition and do not require otherwise needed growth supplements. Stromal growth rate was increased 2-fold in coculture. The inclusion of BCCs in stromal support of long-term culture-initiating cell assay frequencies show no difference (38 +/- 3 versus 36 +/- 6). Nontumorigenic breast cells (patients and cell lines) did not survive in coculture, suggesting that the model could select for malignant population in surgical breast tissues. Cocultures were able to select cells with 73 +/- 7% cloning efficiencies and with the ability to form cocultures with BM stroma. Preprotachykinin-I (PPT-I), a gene that is conserved by evolution, facilitates BCC integration as part of the stromal compartment. This was deduced as follows: (a) nontumorigenic breast cells (n = 4) genetically engineered to express PPT-I and led to anchorage-independent growth, foci formation, and formation of cocultures; and (b) suppression of PPT-I in BCCs (n = 5) with pPMSKH1-PPT-I small interfering RNA reverted the cells to nontumorigenic phenotypes and was undetectable in the BM nude mice. The evidence supports that the PPT-I gene facilitates the integration of BCCs in the stromal compartment during a period before clinical detection, without disrupting hematopoietic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.can-03-3121DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
stromal compartment
12
cancer cells
8
bone marrow
8
bccs
8
bccs enter
8
clinical detection
8
cell lines
8
bccs stromal
8
nontumorigenic breast
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

the evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!