Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe.

Plant J

Zentrum für Biochemie und Molekularbiologie, Universität Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany.

Published: May 2004

Salt stress leads to massive accumulation of toxic levels of Na(+) and Cl(-) ions in plants. By using the recombinant fluorescent probe CLOMELEON, we demonstrate passive anion flux under salt stress. Chloride influx is restricted in the presence of divalent cations like Mg(2+) and Ca(2+), and completely blocked by La(3+). The amount but not the rate of the reported chloride uptake is independent from the kind of corresponding permeable cation (K(+) versus Na(+)), external pH and magnitude of osmotic stress. Cl(-) efflux however seems to involve stretch-activated transport. From the influence of Ca(2+) on reported changes of cytosolic anion concentrations, we speculate that transport mechanisms of Cl(-) and Na(+) might be thermodynamically coupled under saline conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0960-7412.2004.02053.xDOI Listing

Publication Analysis

Top Keywords

salt stress
8
salt stress-induced
4
stress-induced chloride
4
chloride flux
4
flux study
4
study transgenic
4
transgenic arabidopsis
4
arabidopsis expressing
4
expressing fluorescent
4
fluorescent anion
4

Similar Publications

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.

View Article and Find Full Text PDF

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!