We have previously shown that endothelin-1 increases glucose uptake in astrocytes. In the present work we investigate the mechanism through which endothelin-1 (ET-1) increases glucose uptake. Our results show that ET-1 activates a short-term and a long-term mechanism. Thus, ET-1 induced a rapid change in the localization of both GLUT-1 and type I hexokinase. These changes are probably aimed at rapidly increasing the entry and phosphorylation of glucose. In addition, ET-1 upregulated GLUT-1 and type I hexokinase and induced the expression of isoforms not normally expressed in astrocytes, such as GLUT-3 and type II hexokinase. These changes provide astrocytes with the machinery required to sustain a high rate of glucose uptake for a longer period of time. Our previous work had suggested that the effect of ET-1 on glucose uptake was associated with the inhibition of gap junctions. In this work, we compare the effect of ET-1 with that of carbenoxolone, a classical inhibitor of gap junction communication. Carbenoxolone increased glucose uptake to the same extent as ET-1 following the same mechanisms. Thus, carbenoxolone induced a rapid change in the localization of both GLUT-1 and type I hexokinase, upregulated GLUT-1 and type I hexokinase and induced the expression of GLUT-3 and type II hexokinase. When the inhibition of gap junction was prevented by tolbutamide, neither ET-1 nor carbenoxolone were able to increase the levels of GLUT-1, GLUT-3, type I hexokinase or type II hexokinase, indicating that these events are closely related to gap junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2004.02398.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!