AI Article Synopsis

  • - The study explores variations in the drug response and genetic differences in the thiopurine methyltransferase (TPMT) gene across different inbred mouse strains, highlighting its potential for pharmacogenomic research.
  • - Researchers measured TPMT activity using high-performance liquid chromatography and found nearly a five-fold difference in enzyme activity, correlating this variation with mRNA expression levels among the strains.
  • - Genetic analysis revealed only two haplotypes associated with low and high TPMT activity, indicating that mouse models could effectively link genetic variations to drug responses in pharmacogenomics.

Article Abstract

Although the mouse has great potential for pharmacogenomic discovery, little is known about variation in drug response or genetic variation in pharmacologically relevant genes between inbred mouse strains. We therefore assessed variation in gene sequence, mRNA expression and protein activity of thiopurine methyltransferase (TPMT) in multiple inbred mouse strains. TPMT activity was measured by high-performance liquid chromatography detection of 6-MMP produced by incubation of liver homogenates with 6-MP. Genetic variation was assessed by resequencing and single nucleotide polymorphism (SNP) genotyping using pyrosequencing technology. mRNA expression was measured by real-time polymerase chain reaction. We observed an almost five-fold variation in TPMT activity, with strains falling into distinct low and high activity groups. This pattern of TPMT activity was highly correlated with expression of TPMT mRNA among strains, and high TPMT expression is dominant in F1 hybrids. To correlate genotype with phenotype, 29 SNPs and one insertion/deletion were genotyped throughout the TPMT gene and upstream 10 kb. Only two haplotypes were observed across all 30 polymorphisms, corresponding to the low and high activity groups. These results suggest that differential mouse TPMT activity is due to variation in mRNA expression. In addition, the identified pattern of low haplotype diversity suggests that the mouse is likely to be useful for pharmacogenomic discovery by associating haplotype blocks with drug response phenotypes among inbred strains.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00008571-200404000-00004DOI Listing

Publication Analysis

Top Keywords

tpmt activity
16
mrna expression
12
tpmt
9
mouse tpmt
8
activity
8
pharmacogenomic discovery
8
drug response
8
genetic variation
8
inbred mouse
8
mouse strains
8

Similar Publications

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

Efficacy and safety of azathioprine in patients with Cronkhite-Canada syndrome: a case series from Peking Union Medical College Hospital.

BMC Pharmacol Toxicol

December 2024

Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.

Background: Cronkhite-Canada syndrome (CCS) is a rare non-hereditary chronic inflammatory disease characteristic of gastrointestinal polyps and ectodermal abnormalities. Corticosteroid therapy is the mainstay medication for CCS. Few studies indicated immunosuppressants might be the choices for patients with steroid refractory, steroid dependent or intolerant.

View Article and Find Full Text PDF

Introduction: Thiopurine drugs are metabolized by thiopurine methyltransferase (TPMT) and low TPMT activity can result in severe adverse drug reactions. Therefore, TPMT testing is recommended for individuals receiving thiopurines to reduce the risk of toxicity.

Objectives: The objectives of this study were to assess the rate of TPMT testing among individuals receiving thiopurines and explore factors associated with undergoing TPMT testing in Australia.

View Article and Find Full Text PDF
Article Synopsis
  • Azathioprine (AZA), commonly used for autoimmune disorders and organ transplants, shows potential for modern applications in viral, rheumatic, and skin diseases.
  • Advances in pharmacogenomics and nanotechnology may enhance AZA's effectiveness while reducing side effects, particularly by utilizing the active metabolites 6-mercaptopurine and 6-thioguanine.
  • The study suggests that personalized medicine approaches, including genetic testing and innovative drug delivery systems, can improve treatment outcomes for conditions like systemic lupus erythematosus and psoriasis.
View Article and Find Full Text PDF

Genetic profiling of in the Slovenian population.

Pharmacogenomics

November 2024

University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, 1000, Slovenia.

Article Synopsis
  • This text discusses the use of pharmacogenomics to tailor thiopurine therapy based on genetic variants, initially focusing on its success in Asian populations but now recognized in European populations as well.
  • Researchers sequenced specific gene regions in Slovenian individuals to evaluate the pharmacogenetic role of variants related to thiopurine therapy for patients with acute lymphoblastic leukemia (ALL).
  • The study found several genetic variants, including one with known clinical relevance, but most variants were not linked to the dosage of thiopurines in ALL patients, suggesting the need for deeper studies in larger groups.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!